Loading...
Loading...
Loading...
Loading...
Optimizing cost of a Kubernetes microservice while preserving SLOs with performance tests
Optimizing cost of a Java microservice on Kubernetes while preserving SLOs with performance tests
Optimizing cost of a Kubernetes microservice while preserving SLOs in production
Optimizing cost of a Java microservice on Kubernetes while preserving SLOs in production
In this example, you will use Akamas live optimization to minimize the cost of a Kubernetes deployment, while preserving application performance and reliability requirements.
In this example, you need:
an Akamas instance
a Kubernetes cluster, with a deployment to be optimized
the kubectl
command installed in the Akamas instance, configured to access the target Kubernetes and with privileges to get and update the deployment configurations
a supported telemetry data source (e.g. Prometheus or Dynatrace) configured to collect metrics from the target Kubernetes cluster
This example leverages the following optimization packs:
The system represents the Kubernetes deployment to be optimized (let's call it "frontend"). You can create a system.yaml
manifest like this:
Create the new system resource:
The system will then have two components:
A Kubernetes container component, which contains container-level metrics like CPU usage and parameters to be tuned like CPU limits
A Web Application component, which contains service-level metrics like throughput and response time
In this example, we assume the deployment to be optimized is called frontend, with a container named server, and is located within the boutique namespace. We also assume that Dynatrace is used as a telemetry provider.
Create a component-container.yaml
manifest like the following:
Then run:
Now create a component-webapp.yaml
manifest like the following:
Then run:
The workflow in this example is composed of three main steps:
Update the Kubernetes deployment manifest with the Akamas recommended deployment parameters (CPU and memory limits)
Apply the new parameters (kubectl apply)
Wait for the rollout to complete
Sleep for 30 minutes (observation interval)
Create a workflow.yaml
manifest like the following:
Then run:
Create the telemetry.yaml
manifest like the following:
Then run:
In this live optimization:
the goal is to reduce the cost of the Kubernetes deployment. In this example, the cost is based on the amount of CPU and memory limits (assuming requests = limits).
the approval mode is set to manual, a new recommendation is generated daily
to avoid impacting application performance, constraints are specified on desired response times and error rates
to avoid impacting application reliability, constraints are specified on peak resource usage and out-of-memory kills
the parameters to be tuned are the container CPU and memory limits (we assume requests=limits in the deployment file)
Create a study.yaml
manifest like the following:
Then run:
You can now follow the live optimization progress and explore the results using the Akamas UI for Live optimizations.
In this example, you will use Akamas live optimization to minimize the cost of a Kubernetes deployment, while preserving application performance and reliability requirements.
In this example, you need:
an Akamas instance
a Kubernetes cluster, with a deployment to be optimized
the kubectl
command installed in the Akamas instance, configured to access the target Kubernetes and with privileges to get and update the deployment configurations
a supported telemetry data source (e.g. Prometheus or Dynatrace) configured to collect metrics from the target Kubernetes cluster
This example leverages the following optimization packs:
The system represents the Kubernetes deployment to be optimized (let's call it "frontend"). You can create a system.yaml
manifest like this:
Create the new system resource:
The system will then have two components:
A Kubernetes container component, which contains container-level metrics like CPU usage and parameters to be tuned like CPU limits
A Web Application component, which contains service-level metrics like throughput and response time
In this example, we assume the deployment to be optimized is called frontend, with a container named server, and is located within the boutique namespace. We also assume that Dynatrace is used as a telemetry provider.
Create a component-container.yaml
manifest like the following:
Then run:
Now create a component-webapp.yaml
manifest like the following:
Then run:
The workflow in this example is composed of three main steps:
Update the Kubernetes deployment manifest with the Akamas recommended deployment parameters (CPU and memory limits)
Apply the new parameters (kubectl apply)
Wait for the rollout to complete
Sleep for 30 minutes (observation interval)
Create a workflow.yaml
manifest like the following:
Then run:
Create the telemetry.yaml
manifest like the following:
Then run:
In this live optimization:
the goal is to reduce the cost of the Kubernetes deployment. In this example, the cost is based on the amount of CPU and memory limits (assuming requests = limits).
the approval mode is set to manual, a new recommendation is generated daily
to avoid impacting application performance, constraints are specified on desired response times and error rates
to avoid impacting application reliability, constraints are specified on peak resource usage and out-of-memory kills
the parameters to be tuned are the container CPU and memory limits (we assume requests=limits in the deployment file)
Create a study.yaml
manifest like the following:
Then run:
You can now follow the live optimization progress and explore the results using the Akamas UI for Live optimizations.