Akamas Docs
3.1.2
3.1.2
  • How to use this documentation
  • Getting started with Akamas
    • Introduction to Akamas
    • Licensing
    • Deployment
      • Cloud Hosting
    • Security
    • Maintenance & Support (M&S) Services
      • Customer Support Services
      • Support levels for Customer Support Services
      • Support levels for software versions
      • Support levels with Akamas 3.1
  • Installing Akamas
    • Akamas Architecture
    • Prerequisites
      • Hardware Requirements
      • Software Requirements
      • Network requirements
    • Install Akamas dependencies
    • Install the Akamas Server
      • Online installation mode
        • Online installation behind a Proxy server
      • Offline installation mode
      • Changing UI Ports
      • Setup HTTPS configuration
    • Install the Akamas CLI
      • Setup the Akamas CLI
      • Verify the Akamas CLI
      • Initialize Akamas CLI
      • Change CLI configuration
    • Verify the Akamas Server
    • Install the Akamas license
    • Manage anonymous data collection
    • Install an Akamas Workstation
    • Troubleshoot install issues
    • Manage the Akamas Server
      • Akamas logs
      • Audit logs
      • Install upgrades and patches
      • Monitor the Akamas Server
      • Backup & Recover of the Akamas Server
  • Using Akamas
    • General optimization process and methodology
    • Preparing optimization studies
      • Modeling systems
      • Modeling components
        • Creating custom optimization packs
        • Managing optimization packs
      • Creating telemetry instances
      • Creating automation workflows
        • Creating workflows for offline studies
        • Performing load testing to support optimization activities
        • Creating workflows for live optimizations
      • Creating optimization studies
        • Defining optimization goal & constraints
        • Defining windowing policies
        • Defining KPIs
        • Defining parameters & metrics
        • Defining workloads
        • Defining optimization steps
        • Setting safety policies
    • Running optimization studies
      • Before running optimization studies
      • Analyzing results of offline optimization studies
        • Optimization Insights
      • Analyzing results of live optimization studies
      • Before applying optimization results
    • Guidelines for choosing optimization parameters
      • Guidelines for JVM (OpenJ9)
      • Guidelines for JVM layer (OpenJDK)
      • Guidelines for Oracle Database
      • Guidelines for PostgreSQL
    • Guidelines for defining optimization studies
      • Optimizing Linux
      • Optimizing Java OpenJDK
      • Optimizing OpenJ9
      • Optimizing Web Applications
      • Optimizing Kubernetes
      • Optimizing Spark
      • Optimizing Oracle Database
      • Optimizing MongoDB
      • Optimizing MySQL Database
      • Optimizing PostgreSQL
  • Integrating Akamas
    • Integrating Telemetry Providers
      • CSV provider
        • Install CSV provider
        • Create CSV provider instances
      • Dynatrace provider
        • Install Dynatrace provider
        • Create Dynatrace provider instances
      • Prometheus provider
        • Install Prometheus provider
        • Create Prometheus provider instances
        • CloudWatch Exporter
        • OracleDB Exporter
      • Spark History Server provider
        • Install Spark History Server provider
        • Create Spark History Server provider instances
      • NeoLoadWeb provider
        • Setup NeoLoadWeb telemetry provider
        • Create NeoLoadWeb provider instances
      • LoadRunner Professional provider
        • Install LoadRunner Professional provider
        • Create LoadRunner Professional provider instances
      • LoadRunner Enterprise provider
        • Install LoadRunner Enterprise provider
        • Create LoadRunner Enterprise provider instances
      • AWS provider
        • Install AWS provider
        • Create AWS provider instances
    • Integrating Configuration Management
    • Integrating Value Stream Delivery
    • Integrating Load Testing
      • Integrating NeoLoad
      • Integrating Load Runner Professional
      • Integrating LoadRunner Enterprise
  • Akamas Reference
    • Glossary
      • System
      • Component
      • Metric
      • Parameter
      • Component Type
      • Workflow
      • Telemetry Provider
      • Telemetry Instance
      • Optimization Pack
      • Goals & Constraints
      • KPI
      • Optimization Study
      • Offline Optimization Study
      • Live Optimization Study
      • Workspace
    • Construct templates
      • System template
      • Component template
      • Parameter template
      • Metric template
      • Component Types template
      • Telemetry Provider template
      • Telemetry Instance template
      • Workflows template
      • Study template
        • Goal & Constraints
        • Windowing policy
          • Trim windowing
          • Stability windowing
        • Parameter selection
        • Metric selection
        • Workload selection
        • KPIs
        • Steps
          • Baseline step
          • Bootstrap step
          • Preset step
          • Optimize step
        • Parameter rendering
    • Workflow Operators
      • General operator arguments
      • Executor Operator
      • FileConfigurator Operator
      • LinuxConfigurator Operator
      • WindowsExecutor Operator
      • WindowsFileConfigurator Operator
      • Sleep Operator
      • OracleExecutor Operator
      • OracleConfigurator Operator
      • SparkSSHSubmit Operator
      • SparkSubmit Operator
      • SparkLivy Operator
      • NeoLoadWeb Operator
      • LoadRunner Operator
      • LoadRunnerEnteprise Operator
    • Telemetry metric mapping
      • Dynatrace metrics mapping
      • Prometheus metrics mapping
      • NeoLoadWeb metrics mapping
      • Spark History Server metrics mapping
      • LoadRunner metrics mapping
    • Optimization Packs
      • Linux optimization pack
        • Amazon Linux
        • Amazon Linux 2
        • Amazon Linux 2022
        • CentOS 7
        • CentOS 8
        • RHEL 7
        • RHEL 8
        • Ubuntu 16.04
        • Ubuntu 18.04
        • Ubuntu 20.04
      • DotNet optimization pack
        • DotNet Core 3.1
      • Java-OpenJDK optimization pack
        • Java OpenJDK 8
        • Java OpenJDK 11
      • OpenJ9 optimization pack
        • IBM J9 VM 6
        • IBM J9 VM 8
        • Eclipse Open J9 11
      • NodeJS optimization pack
        • NodeJS
      • GO optimization pack
        • GO 1
      • Web Application optimization pack
        • Web Application
      • Docker optimization pack
        • Container
      • Kubernetes optimization pack
        • Kubernetes Pod
        • Kubernetes Container
        • Kubernetes Workload
        • Kubernetes Namespace
        • Kubernetes Cluster
      • WebSphere optimization pack
        • WebSphere 8.5
        • WebSphere Liberty ND
      • AWS optimization pack
        • EC2
        • Lambda
      • PostgreSQL optimization pack
        • PostgreSQL 11
        • PostgreSQL 12
      • Cassandra optimization pack
        • Cassandra
      • MySQL Database optimization pack
        • MySQL 8.0
      • Oracle Database optimization pack
        • Oracle Database 12c
        • Oracle Database 18c
        • Oracle Database 19c
        • RDS Oracle Database 11g
        • RDS Oracle Database 12c
      • MongoDB optimization pack
        • MongoDB 4
        • MongoDB 5
      • Elasticsearch optimization pack
        • Elasticsearch 6
      • Spark optimization pack
        • Spark Application 2.2.0
        • Spark Application 2.3.0
        • Spark Application 2.4.0
    • Command Line commands
      • Administration commands
      • User and Workspace management commands
      • Authentication commands
      • Resource management commands
      • Optimizer options commands
  • Knowledge Base
    • Setting up a Konakart environment for testing Akamas
    • Modeling a sample Java-based e-commerce application (Konakart)
    • Optimizing a web application
    • Optimizing a sample Java OpenJ9 application
    • Optimizing a sample Java OpenJDK application
    • Optimizing a sample Linux system
    • Optimizing a MongoDB server instance
    • Optimizing a Kubernetes application
    • Leveraging Ansible to automate AWS instance management
    • Guidelines for optimizing AWS EC2 instances
    • Optimizing a sample application running on AWS
    • Optimizing a Spark application
    • Optimizing an Oracle Database server instance
    • Optimizing an Oracle Database for an e-commerce service
    • Guidelines for optimizing Oracle RDS
    • Optimizing a MySQL server database running Sysbench
    • Optimizing a MySQL server database running OLTPBench
    • Optimizing a live K8s deployment
    • Optimizing a live full-stack deployment (K8s + JVM)
  • Akamas Free Trial
Powered by GitBook
On this page
  • Metrics
  • CPU and Networking
  • Disks
  • CPU Credits
  • Disk Credits
  • Pricing
  • Parameters
  • Constraints
  • Instance size

Was this helpful?

Export as PDF
  1. Akamas Reference
  2. Optimization Packs
  3. AWS optimization pack

EC2

This page describes the Optimization Pack for AWS EC2.

Metrics

CPU and Networking

Name
Unit
Description

cpu_util

percent

The average CPU utilization % across all the CPUs (i.e., how much time on average the CPUs are busy doing work)

network_in_bytes_details

bytes/s

The number of inbound network packets in bytes per second broken down by network device (e.g., wlp4s0)

network_out_bytes_details

bytes/s

The number of outbound network packets in bytes per second broken down by network device (e.g., eth01)

Disks

Name
Unit
Description

disk_read_bytes

bytes/s

The number of bytes per second read across all disks

disk_write_bytes

bytes/s

The number of bytes per second written across all disks

aws_ec2_disk_iops_reads

ops/s

The per second average number of EBS IO disk-read operations summed across all disks

aws_ec2_disk_iops_writes

ops/s

The per second average number of EBS IO disk-write operations summed across all disks

aws_ec2_disk_iops

ops/s

The per second average number of EBS IO disk operations summed across all disks

CPU Credits

Name
Unit
Description

aws_ec2_credits_cpu_available

credits

The number of earned CPU credits that an instance has accrued since it was launched or started. Credits are accrued in the credit balance after they are earned, and removed from the credit balance when they are spent

aws_ec2_credits_cpu_used

credits

The number of CPU credits spent by the instance for CPU utilization

Disk Credits

Name
Unit
Description

aws_ec2_ebs_credits_io_util

percent

The percentage of I/O credits remaining in the burst bucket

aws_ec2_ebs_credits_bytes_util

percent

The percentage of throughput credits remaining in the burst bucket

Pricing

Name
Unit
Description

aws_ec2_price

dollars

AWS EC2 hourly instance price (on-demand)

Parameters

Notice: for the following parameters to take effect, the instance needs to be stopped and changes need to be applied before restarting the instance.

Name
Unit
Type
Default Value
Domain
Restart
Description

aws_ec2_instance_type

Categorical

m5

c5,c5d,c5a,c6g,c6gd,c6gd, r5,r5d,r5a,r5ad,r6g,r6gd, m5,m5d,m5a,m5ad,m6g,m6gd, t3,t3a, a1,z1d

yes

Instance types comprise varying combinations of CPU, memory, storage, and networking capacity, optimized to fit different use cases

aws_ec2_instance_size

Ordinal

large

nano, micro,small,medium,large, xlarge,2xlarge,4xlarge,8xlarge, 9xlarge,12xlarge,16xlarge, 18xlarge,24xlarge

yes

Constraints

The following table shows a sample of constraints that are required in the definition of the study, depending on the tuned parameters.

Notice that AWS does not support all combinations of instance types and sizes, so it is better to specify them beforehand in your constraints to avoid unnecessary experiment failures.

Instance size

Instance size is an ordinal parameter, this means you constraint it by using a 0-based index, as in this example:

aws.aws_ec2_instance_type === "c5" && (aws.aws_ec2_instance_size === 0 || aws.aws_ec2_instance_size === 2) || aws.aws_ec2_instance_size === "m5" && (aws.aws_ec2_instance_size === 0 || aws.aws_ec2_instance_size === 1)

Domain of aws_ec2_instance_size here is: [4xlarge, 8xlarge, 9xlarge]. Since "c5" instance type does not support 8xlarge instance size, and "m5" instance family does not support the 9xlarge one, this option is enforced with a constraint that allows only c5.4xlarge, c5.9xlarge, m5.4xlarge, and m5.8xlarge configurations

Last updated 2 years ago

Was this helpful?