Akamas Docs
3.1.2
3.1.2
  • How to use this documentation
  • Getting started with Akamas
    • Introduction to Akamas
    • Licensing
    • Deployment
      • Cloud Hosting
    • Security
    • Maintenance & Support (M&S) Services
      • Customer Support Services
      • Support levels for Customer Support Services
      • Support levels for software versions
      • Support levels with Akamas 3.1
  • Installing Akamas
    • Akamas Architecture
    • Prerequisites
      • Hardware Requirements
      • Software Requirements
      • Network requirements
    • Install Akamas dependencies
    • Install the Akamas Server
      • Online installation mode
        • Online installation behind a Proxy server
      • Offline installation mode
      • Changing UI Ports
      • Setup HTTPS configuration
    • Install the Akamas CLI
      • Setup the Akamas CLI
      • Verify the Akamas CLI
      • Initialize Akamas CLI
      • Change CLI configuration
    • Verify the Akamas Server
    • Install the Akamas license
    • Manage anonymous data collection
    • Install an Akamas Workstation
    • Troubleshoot install issues
    • Manage the Akamas Server
      • Akamas logs
      • Audit logs
      • Install upgrades and patches
      • Monitor the Akamas Server
      • Backup & Recover of the Akamas Server
  • Using Akamas
    • General optimization process and methodology
    • Preparing optimization studies
      • Modeling systems
      • Modeling components
        • Creating custom optimization packs
        • Managing optimization packs
      • Creating telemetry instances
      • Creating automation workflows
        • Creating workflows for offline studies
        • Performing load testing to support optimization activities
        • Creating workflows for live optimizations
      • Creating optimization studies
        • Defining optimization goal & constraints
        • Defining windowing policies
        • Defining KPIs
        • Defining parameters & metrics
        • Defining workloads
        • Defining optimization steps
        • Setting safety policies
    • Running optimization studies
      • Before running optimization studies
      • Analyzing results of offline optimization studies
        • Optimization Insights
      • Analyzing results of live optimization studies
      • Before applying optimization results
    • Guidelines for choosing optimization parameters
      • Guidelines for JVM (OpenJ9)
      • Guidelines for JVM layer (OpenJDK)
      • Guidelines for Oracle Database
      • Guidelines for PostgreSQL
    • Guidelines for defining optimization studies
      • Optimizing Linux
      • Optimizing Java OpenJDK
      • Optimizing OpenJ9
      • Optimizing Web Applications
      • Optimizing Kubernetes
      • Optimizing Spark
      • Optimizing Oracle Database
      • Optimizing MongoDB
      • Optimizing MySQL Database
      • Optimizing PostgreSQL
  • Integrating Akamas
    • Integrating Telemetry Providers
      • CSV provider
        • Install CSV provider
        • Create CSV provider instances
      • Dynatrace provider
        • Install Dynatrace provider
        • Create Dynatrace provider instances
      • Prometheus provider
        • Install Prometheus provider
        • Create Prometheus provider instances
        • CloudWatch Exporter
        • OracleDB Exporter
      • Spark History Server provider
        • Install Spark History Server provider
        • Create Spark History Server provider instances
      • NeoLoadWeb provider
        • Setup NeoLoadWeb telemetry provider
        • Create NeoLoadWeb provider instances
      • LoadRunner Professional provider
        • Install LoadRunner Professional provider
        • Create LoadRunner Professional provider instances
      • LoadRunner Enterprise provider
        • Install LoadRunner Enterprise provider
        • Create LoadRunner Enterprise provider instances
      • AWS provider
        • Install AWS provider
        • Create AWS provider instances
    • Integrating Configuration Management
    • Integrating Value Stream Delivery
    • Integrating Load Testing
      • Integrating NeoLoad
      • Integrating Load Runner Professional
      • Integrating LoadRunner Enterprise
  • Akamas Reference
    • Glossary
      • System
      • Component
      • Metric
      • Parameter
      • Component Type
      • Workflow
      • Telemetry Provider
      • Telemetry Instance
      • Optimization Pack
      • Goals & Constraints
      • KPI
      • Optimization Study
      • Offline Optimization Study
      • Live Optimization Study
      • Workspace
    • Construct templates
      • System template
      • Component template
      • Parameter template
      • Metric template
      • Component Types template
      • Telemetry Provider template
      • Telemetry Instance template
      • Workflows template
      • Study template
        • Goal & Constraints
        • Windowing policy
          • Trim windowing
          • Stability windowing
        • Parameter selection
        • Metric selection
        • Workload selection
        • KPIs
        • Steps
          • Baseline step
          • Bootstrap step
          • Preset step
          • Optimize step
        • Parameter rendering
    • Workflow Operators
      • General operator arguments
      • Executor Operator
      • FileConfigurator Operator
      • LinuxConfigurator Operator
      • WindowsExecutor Operator
      • WindowsFileConfigurator Operator
      • Sleep Operator
      • OracleExecutor Operator
      • OracleConfigurator Operator
      • SparkSSHSubmit Operator
      • SparkSubmit Operator
      • SparkLivy Operator
      • NeoLoadWeb Operator
      • LoadRunner Operator
      • LoadRunnerEnteprise Operator
    • Telemetry metric mapping
      • Dynatrace metrics mapping
      • Prometheus metrics mapping
      • NeoLoadWeb metrics mapping
      • Spark History Server metrics mapping
      • LoadRunner metrics mapping
    • Optimization Packs
      • Linux optimization pack
        • Amazon Linux
        • Amazon Linux 2
        • Amazon Linux 2022
        • CentOS 7
        • CentOS 8
        • RHEL 7
        • RHEL 8
        • Ubuntu 16.04
        • Ubuntu 18.04
        • Ubuntu 20.04
      • DotNet optimization pack
        • DotNet Core 3.1
      • Java-OpenJDK optimization pack
        • Java OpenJDK 8
        • Java OpenJDK 11
      • OpenJ9 optimization pack
        • IBM J9 VM 6
        • IBM J9 VM 8
        • Eclipse Open J9 11
      • NodeJS optimization pack
        • NodeJS
      • GO optimization pack
        • GO 1
      • Web Application optimization pack
        • Web Application
      • Docker optimization pack
        • Container
      • Kubernetes optimization pack
        • Kubernetes Pod
        • Kubernetes Container
        • Kubernetes Workload
        • Kubernetes Namespace
        • Kubernetes Cluster
      • WebSphere optimization pack
        • WebSphere 8.5
        • WebSphere Liberty ND
      • AWS optimization pack
        • EC2
        • Lambda
      • PostgreSQL optimization pack
        • PostgreSQL 11
        • PostgreSQL 12
      • Cassandra optimization pack
        • Cassandra
      • MySQL Database optimization pack
        • MySQL 8.0
      • Oracle Database optimization pack
        • Oracle Database 12c
        • Oracle Database 18c
        • Oracle Database 19c
        • RDS Oracle Database 11g
        • RDS Oracle Database 12c
      • MongoDB optimization pack
        • MongoDB 4
        • MongoDB 5
      • Elasticsearch optimization pack
        • Elasticsearch 6
      • Spark optimization pack
        • Spark Application 2.2.0
        • Spark Application 2.3.0
        • Spark Application 2.4.0
    • Command Line commands
      • Administration commands
      • User and Workspace management commands
      • Authentication commands
      • Resource management commands
      • Optimizer options commands
  • Knowledge Base
    • Setting up a Konakart environment for testing Akamas
    • Modeling a sample Java-based e-commerce application (Konakart)
    • Optimizing a web application
    • Optimizing a sample Java OpenJ9 application
    • Optimizing a sample Java OpenJDK application
    • Optimizing a sample Linux system
    • Optimizing a MongoDB server instance
    • Optimizing a Kubernetes application
    • Leveraging Ansible to automate AWS instance management
    • Guidelines for optimizing AWS EC2 instances
    • Optimizing a sample application running on AWS
    • Optimizing a Spark application
    • Optimizing an Oracle Database server instance
    • Optimizing an Oracle Database for an e-commerce service
    • Guidelines for optimizing Oracle RDS
    • Optimizing a MySQL server database running Sysbench
    • Optimizing a MySQL server database running OLTPBench
    • Optimizing a live K8s deployment
    • Optimizing a live full-stack deployment (K8s + JVM)
  • Akamas Free Trial
Powered by GitBook
On this page
  • Akamas Optimization platform
  • Akamas coverage
  • Akamas integrations
  • Use Cases

Was this helpful?

Export as PDF
  1. Getting started with Akamas

Introduction to Akamas

A quick introduction to Akamas

Last updated 2 years ago

Was this helpful?

Akamas is the AI-powered optimization platform designed to maximize service quality and cost efficiency without compromising on application performance. Akamas supports both production environments under live, dynamic workloads, and in test/pre-production environments against any what-if scenario and workload.

Thanks to Akamas, performance engineers, DevOps, CloudOps, FinOps and SRE teams can keep complex applications, such as Kubernetes microservices applications, optimized to avoid any unnecessary cost and any performance risks.

Akamas Optimization platform

The Akamas optimization platform leverages patented AI techniques that can autonomously identify optimal full-stack configurations driven by any custom-defined goals and constraints (SLOs), without any human intervention, any agents, and any code or byte-code changes.

Akamas optimal configurations can be applied either i) under human approval (human-in-the-loop mode) or ii) automatically, as a continuous optimization step in a CI/CD pipeline (in-the-pipe) or iii) autonomously by Akamas (autopilot).

Akamas coverage

Akamas can optimize any system with respect to any set of parameters chosen from the application, middleware, database, cloud, and any other underlying layers.

Akamas provides dozens of out-of-the-box Optimization Packs available for key technologies such as JVM, Go, Kubernetes, Docker, Oracle, MongoDB, ElasticSearch, PostgreSQL, Spark, AWS EC2 and Lambda, and more. Optimization Pack provides parameters, relationships, and metrics to accelerate the optimization process setup and support company-wide best practices. Custom Optimization Packs can be easily created without any coding.

The following figure is illustrative of Akamas coverage for both managed technologies and integrated components of the ecosystem.

Akamas integrations

Akamas can integrate with any ecosystem thanks to out-of-the-box and custom integrations with the following components:

  • telemetry & monitoring tools and other sources of KPIs and cost data, such as Dynatrace, Prometheus, CloudWatch, and CSV files

  • configuration management tools, repositories and interfaces to apply configurations, such as Ansible, Openshift, and Git

  • value stream delivery tools to support a continuous optimization process, such as Jenkins, Dynatrace Cloud Automation, and GitLab

  • load testing tools to generate simulated workloads in test/pre-production, such as LoadRunner, NeoLoad, and JMeter

Akamas has been designed around Infrastructure-as-Code (IaC) and DevOps principles. Thanks to a comprehensive set of APIs and integration mechanisms, it is possible to extend the Akamas optimization platform to manage any system and integrate with any ecosystem.

Use Cases

Akamas optimization platform supports a variety of use cases, including:

  • Improve Service Quality: optimize application performance (e.g. maximize throughput, minimize response time and job execution time) and stability (lower fluctuations and peaks);

  • Increase Business Agility: identify resource bottlenecks in early stages of the delivery cycle, avoid delays due to manual remediations - release higher quality services and reduce production incidents;

  • Increase Service Resilience: improve service resilience under higher workloads (e.g. expected business growth) or failure scenarios identified by chaos engineering practices - improve SRE practice;

  • Reduce IT Cost / Cloud Bill: reduce on-premise infrastructure cost and cloud bills due to resource over-provisioning - improve cost efficiency of Kubernetes microservices applications;

  • Optimize Cloud Migration: safely migrate on-premise applications to cloud environments for optimal cost efficiency evaluate options to migrate to managed services (e.g. AWS Fargate);

  • Improve Operational Efficiency: save engineering time spent on manual tuning tasks and enable Performance Engineering teams to do more in less time (and with less external consulting).

Akamas high-level architecture
Akamas optimizes any system and integrates with any ecosystem
Akamas key use cases