Akamas Docs
3.1.2
3.1.2
  • How to use this documentation
  • Getting started with Akamas
    • Introduction to Akamas
    • Licensing
    • Deployment
      • Cloud Hosting
    • Security
    • Maintenance & Support (M&S) Services
      • Customer Support Services
      • Support levels for Customer Support Services
      • Support levels for software versions
      • Support levels with Akamas 3.1
  • Installing Akamas
    • Akamas Architecture
    • Prerequisites
      • Hardware Requirements
      • Software Requirements
      • Network requirements
    • Install Akamas dependencies
    • Install the Akamas Server
      • Online installation mode
        • Online installation behind a Proxy server
      • Offline installation mode
      • Changing UI Ports
      • Setup HTTPS configuration
    • Install the Akamas CLI
      • Setup the Akamas CLI
      • Verify the Akamas CLI
      • Initialize Akamas CLI
      • Change CLI configuration
    • Verify the Akamas Server
    • Install the Akamas license
    • Manage anonymous data collection
    • Install an Akamas Workstation
    • Troubleshoot install issues
    • Manage the Akamas Server
      • Akamas logs
      • Audit logs
      • Install upgrades and patches
      • Monitor the Akamas Server
      • Backup & Recover of the Akamas Server
  • Using Akamas
    • General optimization process and methodology
    • Preparing optimization studies
      • Modeling systems
      • Modeling components
        • Creating custom optimization packs
        • Managing optimization packs
      • Creating telemetry instances
      • Creating automation workflows
        • Creating workflows for offline studies
        • Performing load testing to support optimization activities
        • Creating workflows for live optimizations
      • Creating optimization studies
        • Defining optimization goal & constraints
        • Defining windowing policies
        • Defining KPIs
        • Defining parameters & metrics
        • Defining workloads
        • Defining optimization steps
        • Setting safety policies
    • Running optimization studies
      • Before running optimization studies
      • Analyzing results of offline optimization studies
        • Optimization Insights
      • Analyzing results of live optimization studies
      • Before applying optimization results
    • Guidelines for choosing optimization parameters
      • Guidelines for JVM (OpenJ9)
      • Guidelines for JVM layer (OpenJDK)
      • Guidelines for Oracle Database
      • Guidelines for PostgreSQL
    • Guidelines for defining optimization studies
      • Optimizing Linux
      • Optimizing Java OpenJDK
      • Optimizing OpenJ9
      • Optimizing Web Applications
      • Optimizing Kubernetes
      • Optimizing Spark
      • Optimizing Oracle Database
      • Optimizing MongoDB
      • Optimizing MySQL Database
      • Optimizing PostgreSQL
  • Integrating Akamas
    • Integrating Telemetry Providers
      • CSV provider
        • Install CSV provider
        • Create CSV provider instances
      • Dynatrace provider
        • Install Dynatrace provider
        • Create Dynatrace provider instances
      • Prometheus provider
        • Install Prometheus provider
        • Create Prometheus provider instances
        • CloudWatch Exporter
        • OracleDB Exporter
      • Spark History Server provider
        • Install Spark History Server provider
        • Create Spark History Server provider instances
      • NeoLoadWeb provider
        • Setup NeoLoadWeb telemetry provider
        • Create NeoLoadWeb provider instances
      • LoadRunner Professional provider
        • Install LoadRunner Professional provider
        • Create LoadRunner Professional provider instances
      • LoadRunner Enterprise provider
        • Install LoadRunner Enterprise provider
        • Create LoadRunner Enterprise provider instances
      • AWS provider
        • Install AWS provider
        • Create AWS provider instances
    • Integrating Configuration Management
    • Integrating Value Stream Delivery
    • Integrating Load Testing
      • Integrating NeoLoad
      • Integrating Load Runner Professional
      • Integrating LoadRunner Enterprise
  • Akamas Reference
    • Glossary
      • System
      • Component
      • Metric
      • Parameter
      • Component Type
      • Workflow
      • Telemetry Provider
      • Telemetry Instance
      • Optimization Pack
      • Goals & Constraints
      • KPI
      • Optimization Study
      • Offline Optimization Study
      • Live Optimization Study
      • Workspace
    • Construct templates
      • System template
      • Component template
      • Parameter template
      • Metric template
      • Component Types template
      • Telemetry Provider template
      • Telemetry Instance template
      • Workflows template
      • Study template
        • Goal & Constraints
        • Windowing policy
          • Trim windowing
          • Stability windowing
        • Parameter selection
        • Metric selection
        • Workload selection
        • KPIs
        • Steps
          • Baseline step
          • Bootstrap step
          • Preset step
          • Optimize step
        • Parameter rendering
    • Workflow Operators
      • General operator arguments
      • Executor Operator
      • FileConfigurator Operator
      • LinuxConfigurator Operator
      • WindowsExecutor Operator
      • WindowsFileConfigurator Operator
      • Sleep Operator
      • OracleExecutor Operator
      • OracleConfigurator Operator
      • SparkSSHSubmit Operator
      • SparkSubmit Operator
      • SparkLivy Operator
      • NeoLoadWeb Operator
      • LoadRunner Operator
      • LoadRunnerEnteprise Operator
    • Telemetry metric mapping
      • Dynatrace metrics mapping
      • Prometheus metrics mapping
      • NeoLoadWeb metrics mapping
      • Spark History Server metrics mapping
      • LoadRunner metrics mapping
    • Optimization Packs
      • Linux optimization pack
        • Amazon Linux
        • Amazon Linux 2
        • Amazon Linux 2022
        • CentOS 7
        • CentOS 8
        • RHEL 7
        • RHEL 8
        • Ubuntu 16.04
        • Ubuntu 18.04
        • Ubuntu 20.04
      • DotNet optimization pack
        • DotNet Core 3.1
      • Java-OpenJDK optimization pack
        • Java OpenJDK 8
        • Java OpenJDK 11
      • OpenJ9 optimization pack
        • IBM J9 VM 6
        • IBM J9 VM 8
        • Eclipse Open J9 11
      • NodeJS optimization pack
        • NodeJS
      • GO optimization pack
        • GO 1
      • Web Application optimization pack
        • Web Application
      • Docker optimization pack
        • Container
      • Kubernetes optimization pack
        • Kubernetes Pod
        • Kubernetes Container
        • Kubernetes Workload
        • Kubernetes Namespace
        • Kubernetes Cluster
      • WebSphere optimization pack
        • WebSphere 8.5
        • WebSphere Liberty ND
      • AWS optimization pack
        • EC2
        • Lambda
      • PostgreSQL optimization pack
        • PostgreSQL 11
        • PostgreSQL 12
      • Cassandra optimization pack
        • Cassandra
      • MySQL Database optimization pack
        • MySQL 8.0
      • Oracle Database optimization pack
        • Oracle Database 12c
        • Oracle Database 18c
        • Oracle Database 19c
        • RDS Oracle Database 11g
        • RDS Oracle Database 12c
      • MongoDB optimization pack
        • MongoDB 4
        • MongoDB 5
      • Elasticsearch optimization pack
        • Elasticsearch 6
      • Spark optimization pack
        • Spark Application 2.2.0
        • Spark Application 2.3.0
        • Spark Application 2.4.0
    • Command Line commands
      • Administration commands
      • User and Workspace management commands
      • Authentication commands
      • Resource management commands
      • Optimizer options commands
  • Knowledge Base
    • Setting up a Konakart environment for testing Akamas
    • Modeling a sample Java-based e-commerce application (Konakart)
    • Optimizing a web application
    • Optimizing a sample Java OpenJ9 application
    • Optimizing a sample Java OpenJDK application
    • Optimizing a sample Linux system
    • Optimizing a MongoDB server instance
    • Optimizing a Kubernetes application
    • Leveraging Ansible to automate AWS instance management
    • Guidelines for optimizing AWS EC2 instances
    • Optimizing a sample application running on AWS
    • Optimizing a Spark application
    • Optimizing an Oracle Database server instance
    • Optimizing an Oracle Database for an e-commerce service
    • Guidelines for optimizing Oracle RDS
    • Optimizing a MySQL server database running Sysbench
    • Optimizing a MySQL server database running OLTPBench
    • Optimizing a live K8s deployment
    • Optimizing a live full-stack deployment (K8s + JVM)
  • Akamas Free Trial
Powered by GitBook
On this page
  • Prerequisites
  • Create Akamas entities
  • How to retrieve the required configurations from NeoLoad
  • Troubleshooting

Was this helpful?

Export as PDF
  1. Integrating Akamas
  2. Integrating Load Testing

Integrating NeoLoad

The focus of this guide is how to integrate Akamas with Tricentis NeoLoad in order to leverage Neoload as a performance testing tool in an Akamas optimization.

Prerequisites

To be able to execute a test from Neoload and to collect the Neoload metrics you will need:

  • Neoload 7.0+

  • a valid Neoload license;

  • a working Neoload test script;

  • a fully working Neoload farm composed by:

    • NeoLoadWeb (saas or on-prem);

    • a Neoload "zone" composed of 1 controller and (at least) 1 loadgenerator;

  • URL (and port if it is not the default one) of the NeoLoadWeb server;

  • to whitelist the connections between:

    • Akamas server and NeoLoadWeb server over port 8080 and 8081 (if NeoLoadWeb is deployed on-premises);

    • Akamas server and internet if NeoLoadWeb is managed as a SaaS platform

  • A NeoLoadWeb user with a "tester" role ("guest" role cannot be used due to limitations in triggering test execution). For compatibility reasons, the user related to the generated token must belong to the default workspace.

  • A NeoLoadWeb API token created with the above user to inherit the same rights

Create Akamas entities

Component

At the component level, the NeoLoad integration is trivial and only requires specifying a single NeoLoad property at the Web Application component. These properties will be used during the telemetry phase to map the NeoLoad metrics (e.g. transactions response time, error rate, etc..) to the right Akamas component.

The example below provides an example of a component definition with the appropriate NeoLoadWeb property:

name: konakart
description: konakart service layer component
componentType: Web Application
properties:
  neoloadweb: "true"

Telemetry instance

At the telemetry level, the NeoLoad integration relies on the NeoLoadWeb telemetry provider.

The following is an example of a NeoLoad telemetry instance:

# NeoLoad Web Telemetry Provider Instance
provider: Neoload
config:
  neoloadApi: http://NeoLoadWeb-api.mydomain.com
  accountToken: XXXX

Workflow

The workflow configuration changes depending on your NeoLoadWeb deployment, since it could be Saas or on-premises.

For compatibility reasons, the user related to the generated token must belong to the default workspace.

How to retrieve the required configurations from NeoLoad

Some properties can be retrieved from the NeoLoad application or NeoLoadWeb.

Property
Steps

scenarioName

  • open project on NeoLoad

  • go to the runtime tab

  • pick a scenario from the "scenarios" multi-select

accountToken

  • access your NeoLoad Web platform

  • go to profile

  • hit "generate access token" or retrieve an existing one

Notice: for compatibility reasons, the user related to the generated token must belong to the default workspace.

You need to have a controller and at least one load generator in place in the zone you have configured in the workflow step

Property
Steps

lgZones controllerZoneId

  • access your NeoLoad Web platform

  • go to the Resources tab

  • pick the Zone id of an existing zone or create a new one

  • only for lgZones: append ":" as a suffix plus the number of load generators you are going to use during the test

Troubleshooting

Assuming that the NeoLoad scripts are hosted on your instance (thus you didn’t upload them on NeoLoad Web) the following command will run the load test scripts deployed in folder neoload-project on your NeoLoad farm:

docker run --rm \
-v'/home/ubuntu/studyTroubleshooting/updatedArtifacts/neoload/altStudy:/neoload-project' \
-e NEOLOADWEB_TOKEN=xxxxxxxx \
-e CONTROLLER_ZONE_ID=iM7QB \
-e LG_ZONE_IDS=iM7QB:1 \
-e TEST_RESULT_NAME=myTestResult \
-e SCENARIO_NAME=10VU_5min \
neotys/neoload-web-test-launcher

where neoload-project is the name of the mount point that the container is expecting. Please do not change it. Docker will mount your project folder in an internal folder named neoload-project

The project folder can contain:

  • A NeoLoad project folder including .nlp, config.zip ...

  • A single zip file containing the NeoLoad project

  • A single YAML file containing the NeoLoad project as code

Problem Test file upload on NeoloadWeb fails with the following error:

Uploading project
Error code: 400
{"error": "UNAUTHORIZED_OPERATION"}
io.swagger.client.ApiException: Bad Request
        at io.swagger.client.ApiClient.handleResponse(ApiClient.java:924)
        at io.swagger.client.ApiClient.execute(ApiClient.java:840)
        at io.swagger.client.api.RuntimeApi.postUploadProjectWithHttpInfo(RuntimeApi.java:342)
        at io.swagger.client.api.RuntimeApi.postUploadProject(RuntimeApi.java:328)
        at com.neotys.nlweb.runtime.Launch.launchTest(Launch.java:241)
        at com.neotys.nlweb.runtime.Launch.main(Launch.java:59)

Solution The user related to the token you are using must belong to the default workspace.

Last updated 1 year ago

Was this helpful?

The overall configuration is described by the page.

In case the NeoLoadWeb telemetry provider is not already installed on the Akamas server, please follow the instructions on the page. After installing the telemetry provider, a NeoLoadWeb telemetry instance can be implemented following the instructions on page.

At the workflow level, the NeoLoad integration requires implementing a dedicated task based on the .

The operator configurations required by NeoLoad are described on the .

You might want to use docker container which can be useful for quickly troubleshooting your NeoLoad integration instead of building and running a full study on Akamas.

Integrating Neoload provider
Setup NeoLoad telemetry provider
Create NeoLoadWeb telemetry instance
NeoLoadWeb operator
NeoLoad operator page
this