Akamas Docs
3.1.3
3.1.3
  • How to use this documentation
  • Getting started with Akamas
    • Introduction to Akamas
    • Licensing
    • Deployment
      • Cloud Hosting
    • Security
    • Maintenance & Support (M&S) Services
      • Customer Support Services
      • Support levels for Customer Support Services
      • Support levels for software versions
      • Support levels with Akamas 3.1
  • Installing Akamas
    • Akamas Architecture
    • Prerequisites
      • Hardware Requirements
      • Software Requirements
      • Network requirements
    • Install Akamas dependencies
    • Install the Akamas Server
      • Online installation mode
        • Online installation behind a Proxy server
      • Offline installation mode
      • Changing UI Ports
      • Setup HTTPS configuration
    • Install the Akamas CLI
      • Setup the Akamas CLI
      • Verify the Akamas CLI
      • Initialize Akamas CLI
      • Change CLI configuration
    • Verify the Akamas Server
    • Install the Akamas license
    • Manage anonymous data collection
    • Troubleshoot install issues
    • Manage the Akamas Server
      • Akamas logs
      • Audit logs
      • Install upgrades and patches
      • Monitor the Akamas Server
      • Backup & Recover of the Akamas Server
  • Using Akamas
    • General optimization process and methodology
    • Preparing optimization studies
      • Modeling systems
      • Modeling components
        • Creating custom optimization packs
        • Managing optimization packs
      • Creating telemetry instances
      • Creating automation workflows
        • Creating workflows for offline studies
        • Performing load testing to support optimization activities
        • Creating workflows for live optimizations
      • Creating optimization studies
        • Defining optimization goal & constraints
        • Defining windowing policies
        • Defining KPIs
        • Defining parameters & metrics
        • Defining workloads
        • Defining optimization steps
        • Setting safety policies
    • Running optimization studies
      • Before running optimization studies
      • Analyzing results of offline optimization studies
        • Optimization Insights
      • Analyzing results of live optimization studies
      • Before applying optimization results
    • Guidelines for choosing optimization parameters
      • Guidelines for JVM (OpenJ9)
      • Guidelines for JVM layer (OpenJDK)
      • Guidelines for Oracle Database
      • Guidelines for PostgreSQL
    • Guidelines for defining optimization studies
      • Optimizing Linux
      • Optimizing Java OpenJDK
      • Optimizing OpenJ9
      • Optimizing Web Applications
      • Optimizing Kubernetes
      • Optimizing Spark
      • Optimizing Oracle Database
      • Optimizing MongoDB
      • Optimizing MySQL Database
      • Optimizing PostgreSQL
  • Integrating Akamas
    • Integrating Telemetry Providers
      • CSV provider
        • Install CSV provider
        • Create CSV telemetry instances
      • Dynatrace provider
        • Install Dynatrace provider
        • Create Dynatrace telemetry instances
      • Prometheus provider
        • Install Prometheus provider
        • Create Prometheus telemetry instances
        • CloudWatch Exporter
        • OracleDB Exporter
      • Spark History Server provider
        • Install Spark History Server provider
        • Create Spark History Server telemetry instances
      • NeoLoadWeb provider
        • Install NeoLoadWeb telemetry provider
        • Create NeoLoadWeb telemetry instances
      • LoadRunner Professional provider
        • Install LoadRunner Professional provider
        • Create LoadRunner Professional telemetry instances
      • LoadRunner Enterprise provider
        • Install LoadRunner Enterprise provider
        • Create LoadRunner Enterprise telemetry instances
      • AWS provider
        • Install AWS provider
        • Create AWS telemetry instances
    • Integrating Configuration Management
    • Integrating Value Stream Delivery
    • Integrating Load Testing
      • Integrating NeoLoad
      • Integrating Load Runner Professional
      • Integrating LoadRunner Enterprise
  • Akamas Reference
    • Glossary
      • System
      • Component
      • Metric
      • Parameter
      • Component Type
      • Workflow
      • Telemetry Provider
      • Telemetry Instance
      • Optimization Pack
      • Goals & Constraints
      • KPI
      • Optimization Study
      • Offline Optimization Study
      • Live Optimization Study
      • Workspace
    • Construct templates
      • System template
      • Component template
      • Parameter template
      • Metric template
      • Component Types template
      • Telemetry Provider template
      • Telemetry Instance template
      • Workflows template
      • Study template
        • Goal & Constraints
        • Windowing policy
          • Trim windowing
          • Stability windowing
        • Parameter selection
        • Metric selection
        • Workload selection
        • KPIs
        • Steps
          • Baseline step
          • Bootstrap step
          • Preset step
          • Optimize step
        • Parameter rendering
    • Workflow Operators
      • General operator arguments
      • Executor Operator
      • FileConfigurator Operator
      • LinuxConfigurator Operator
      • WindowsExecutor Operator
      • WindowsFileConfigurator Operator
      • Sleep Operator
      • OracleExecutor Operator
      • OracleConfigurator Operator
      • SparkSSHSubmit Operator
      • SparkSubmit Operator
      • SparkLivy Operator
      • NeoLoadWeb Operator
      • LoadRunner Operator
      • LoadRunnerEnteprise Operator
    • Telemetry metric mapping
      • Dynatrace metrics mapping
      • Prometheus metrics mapping
      • NeoLoadWeb metrics mapping
      • Spark History Server metrics mapping
      • LoadRunner metrics mapping
    • Optimization Packs
      • Linux optimization pack
        • Amazon Linux
        • Amazon Linux 2
        • Amazon Linux 2022
        • CentOS 7
        • CentOS 8
        • RHEL 7
        • RHEL 8
        • Ubuntu 16.04
        • Ubuntu 18.04
        • Ubuntu 20.04
      • DotNet optimization pack
        • DotNet Core 3.1
      • Java OpenJDK optimization pack
        • Java OpenJDK 8
        • Java OpenJDK 11
      • OpenJ9 optimization pack
        • IBM J9 VM 6
        • IBM J9 VM 8
        • Eclipse Open J9 11
      • NodeJS optimization pack
        • NodeJS
      • GO optimization pack
        • GO 1
      • Web Application optimization pack
        • Web Application
      • Docker optimization pack
        • Container
      • Kubernetes optimization pack
        • Kubernetes Pod
        • Kubernetes Container
        • Kubernetes Workload
        • Kubernetes Namespace
        • Kubernetes Cluster
      • WebSphere optimization pack
        • WebSphere 8.5
        • WebSphere Liberty ND
      • AWS optimization pack
        • EC2
        • Lambda
      • PostgreSQL optimization pack
        • PostgreSQL 11
        • PostgreSQL 12
      • Cassandra optimization pack
        • Cassandra
      • MySQL Database optimization pack
        • MySQL 8.0
      • Oracle Database optimization pack
        • Oracle Database 12c
        • Oracle Database 18c
        • Oracle Database 19c
        • RDS Oracle Database 11g
        • RDS Oracle Database 12c
      • MongoDB optimization pack
        • MongoDB 4
        • MongoDB 5
      • Elasticsearch optimization pack
        • Elasticsearch 6
      • Spark optimization pack
        • Spark Application 2.2.0
        • Spark Application 2.3.0
        • Spark Application 2.4.0
    • Command Line commands
      • Administration commands
      • User and Workspace management commands
      • Authentication commands
      • Resource management commands
      • Optimizer options commands
    • Release Notes
  • Knowledge Base
    • Setting up a Konakart environment for testing Akamas
    • Modeling a sample Java-based e-commerce application (Konakart)
    • Optimizing a web application
    • Optimizing a sample Java OpenJ9 application
    • Optimizing a sample Java OpenJDK application
    • Optimizing a sample Linux system
    • Optimizing a MongoDB server instance
    • Optimizing a Kubernetes application
    • Leveraging Ansible to automate AWS instance management
    • Guidelines for optimizing AWS EC2 instances
    • Optimizing a sample application running on AWS
    • Optimizing a Spark application
    • Optimizing an Oracle Database server instance
    • Optimizing an Oracle Database for an e-commerce service
    • Guidelines for optimizing Oracle RDS
    • Optimizing a MySQL server database running Sysbench
    • Optimizing a MySQL server database running OLTPBench
    • Optimizing cost of a Kubernetes application while preserving SLOs in production
    • Optimizing a live full-stack deployment (K8s + JVM)
  • Akamas Free Trial
Powered by GitBook
On this page
  • Configuration options
  • Telemetry instance reference
  • Use cases
  • Collect system metrics

Was this helpful?

Export as PDF
  1. Integrating Akamas
  2. Integrating Telemetry Providers
  3. Dynatrace provider

Create Dynatrace telemetry instances

Last updated 1 year ago

Was this helpful?

The installed provider is shared with all users of your Akamas installation and can monitor many different systems, by configuring appropriate telemetry provider instances.

To create an instance of the Dynatrace provider, build a YAML file (instance.yml in this example) with the definition of the instance:

# Dynatrace Telemetry Provider Instance
provider: Dynatrace
config:
  url: https://wuy711522.live.dynatrace.com
  token: XbERgThisIsAnExampleToken

Then you can create the instance for the system using the Akamas CLI:

akamas create telemetry-instance instance.yml system

Configuration options

When you create an instance of the Dynatrace provider, you should specify some configuration information to allow the provider to correctly extract and process metrics from Dynatrace.

You can specify configuration information within the config part of the YAML of the instance definition.

Required properties

  • url - URL of the Dynatrace installation API (see to retrieve the URL of your installation)

  • token - A Dynatrace API Token with the

Collect additional metrics

You can collect additional metrics with the Dynatrace provider by using the metrics field:

config:
  url: https://wuy71982.live.dynatrace.com
  token: XbERgkKeLgVfDI2SDwI0h
metrics:
- metric: "akamas_metric"                     # extra akamas metrics to monitor
  datasourceMetric: builtin:host:new_metric   # query to execute to extract the metric
  labels:
  - "method"      # the "method" label will be retained within akamas

Configure a proxy for Dynatrace

In the case in which Akamas cannot reach directly your Dynatrace installation, you can configure an HTTP proxy by using the proxy field:

config:
  url: https://wuy71982.live.dynatrace.com
  token: XbERgkKeLgVfDI2SDwI0h
  proxy:
    address: https://dynaproxy  # the URL of the HTTP proxy
    port: 9999                  # the port the proxy listens to

Telemetry instance reference

This section reports the complete reference for the definition of a telemetry instance.

provider: Dynatrace  # this is an instance of the <name> provider
config:
  url: https://wuy71982.live.dynatrace.com
  token: XbERgkKeLgVfDI2SDwI0h
  proxy:
    address: https://dynaproxy # the URL of the HTTP proxy
    port: 9999            # the port the proxy listens to
    username: myusername  # http basic auth username if necessary
    password: mypassword  # http basic auth password if necessary
  tags:
    Environment: Test       # dynatrace tags to be matched for every component

metrics:
- metric: "cpu_usage"  # this is the name of the metric within Akamas
  # The dynatrace metric name
  datasourceMetric: "builtin:host.cpu.usage"
  extras:
      mergeEntities: true  # instruct the telemetry to aggregate the metric over multiple entities
  aggregation: avg  # The aggregation to perform if the mergeEntities property is set to true

This table shows the reference for the config section within the definition of the Dynatrace provider instance:

Field
Type
Value restrictions
Required
Default Value
Description

url

String

It should be a valid URL

Yes

token

String

Yes

proxy

Object

See Proxy options reference

Yes

The specification of the HTTP proxy to use to communicate with Dynatrace.

pushEvents

String

true, false

No

true

If set to true the provider will inform dynatrace of the configuration change event which will be visible in the Dynatrace UI.

tags

Object

No

A set of global tags to match Dynatrace entities. The provider uses these tags to apply a default filtering of Dynatrace entities for every component.

Proxy options reference

This table reports the reference for the config → proxy section within the definition of the Dynatrace provider instance:

Field
Type
Value restrictions
Required
Default value
Description

address

String

It should be a valid URL

Yes

The URL of the HTTP proxy to use to communicate with the Dynatrace installation API

port

Number (integer)

1 <port<65535

Yes

The port at which the HTTP proxy listens for connections

username

String

No

The username to use when authenticating against the HTTP proxy, if necessary

password

String

No

The username to use when authenticating against the HTTP proxy, if necessary

Metrics options reference

This table reports the reference for the metrics section within the definition of the Dynatrace provider instance. The section contains a collection of objects with the following properties:

Field
Type
Value Restrictions
Required
Default value
Description

metric

String

It must be an Akamas metric

Yes

The name of an Akamas metric that should map to the new metric you want to gather

datasourceMetric

String

A valid Dynatrace metric

Yes

The Dynatrace query to use to extract metric

labels

Array of strings

-

No

The list of Dynatrace labels that should be retained when gathering the metric

staticLabels

Key-Value

-

No

Static labels that will be attached to metric samples

Use cases

This section reports common use cases addressed by this provider.

Collect system metrics

Check the Linux optimization pack for a list of all the system metrics available in Akamas.

As a second step, choose a strategy to map your Linux component (MyLinuxComponent) with the corresponding Dyntrace entity.

Let’s assume you want to map by id your Dynatrace entity, you can find the id in the URL bar of a Dyntrace dashboard of the entity:

Grab the id and add it to the Linux component definition:

name: MyLinuxComponent
description: this is a Linux component
properties:
  dynatrace:
    id: HOST-A987D45512ABCEEE

You can leverage the name of the entity as well:

name: MyLinuxComponent
description: this is a Linux component
properties:
  dynatrace:
    name: Host1

As a third and final step, once the component is all set, you can create an instance of the Dynatrace provider and then build your first studies:

name: Dynatrace
config:
  url: https://my_dyna_installation_url
  token: MY_DYNA_TOKEN

The URL of the Dynatrace installation API (see the )

The Dynatrace API Token the provider should use to interact with Dynatrace. The token should have .

As a first step to start extracting metrics from Dyntrace, and make sure it has the right permissions.

generate your API token
official reference
sufficient permissions
https://www.dynatrace.com/support/help/extend-dynatrace/dynatrace-api/
proper permissions