Akamas Docs
3.3.0
3.3.0
  • How to use this documentation
  • Getting started with Akamas
    • Introduction to Akamas
    • Licensing
    • Deployment
      • Cloud Hosting
    • Security
    • Maintenance & Support (M&S) Services
      • Customer Support Services
      • Support levels for Customer Support Services
      • Support levels for software versions
      • Support levels with Akamas
  • Installing Akamas
    • Architecture
    • Docker compose installation
      • Prerequisites
        • Hardware Requirements
        • Software Requirements
        • Network requirements
      • Install Akamas dependencies
      • Install the Akamas Server
        • Online installation mode
          • Online installation behind a Proxy server
        • Offline installation mode
        • Changing UI Ports
        • Setup HTTPS configuration
      • Troubleshoot Docker installation issues
    • Kubernetes installation
      • Prerequisites
        • Cluster Requirements
        • Software Requirements
      • Install Akamas
        • Online Installation
        • Offline Installation - Private registry
      • Accessing Akamas
      • Useful commands
    • Install the CLI
      • Setup the CLI
      • Initialize the CLI
      • Change CLI configuration
      • Use a proxy server
    • Verify the installation
    • Management container/pod
    • Install the license
    • Manage anonymous data collection
    • Configure an external identity provider
      • Azure Active Directory
      • Google
  • Managing Akamas
    • Akamas logs
    • Audit logs
    • Upgrade Akamas
      • Docker compose
      • Kubernetes
    • Monitor the Akamas Server
    • Backup & Recover of the Akamas Server
  • Using Akamas
    • General optimization process and methodology
    • Preparing optimization studies
      • Modeling systems
      • Modeling components
        • Creating custom optimization packs
        • Managing optimization packs
      • Creating telemetry instances
      • Creating automation workflows
        • Creating workflows for offline studies
        • Performing load testing to support optimization activities
        • Creating workflows for live optimizations
      • Creating optimization studies
        • Defining optimization goal & constraints
        • Defining windowing policies
        • Defining KPIs
        • Defining parameters & metrics
        • Defining workloads
        • Defining optimization steps
        • Setting safety policies
    • Running optimization studies
      • Before running optimization studies
      • Analyzing results of offline optimization studies
        • Optimization Insights
      • Analyzing results of live optimization studies
      • Before applying optimization results
    • Guidelines for choosing optimization parameters
      • Guidelines for Kubernetes
      • Guidelines for JVM layer (OpenJDK)
      • Guidelines for JVM (OpenJ9)
      • Guidelines for Oracle Database
      • Guidelines for PostgreSQL
    • Guidelines for defining optimization studies
      • Optimizing Linux
      • Optimizing Java OpenJDK
      • Optimizing OpenJ9
      • Optimizing Web Applications
      • Optimizing Kubernetes
      • Optimizing Spark
      • Optimizing Oracle Database
      • Optimizing MongoDB
      • Optimizing MySQL Database
      • Optimizing PostgreSQL
  • Integrating Akamas
    • Integrating Telemetry Providers
      • CSV provider
        • Install CSV provider
        • Create CSV telemetry instances
      • Dynatrace provider
        • Install Dynatrace provider
        • Create Dynatrace telemetry instances
          • Import Key Requests
      • Prometheus provider
        • Install Prometheus provider
        • Create Prometheus telemetry instances
        • CloudWatch Exporter
        • OracleDB Exporter
      • Spark History Server provider
        • Install Spark History Server provider
        • Create Spark History Server telemetry instances
      • NeoLoadWeb provider
        • Install NeoLoadWeb telemetry provider
        • Create NeoLoadWeb telemetry instances
      • LoadRunner Professional provider
        • Install LoadRunner Professional provider
        • Create LoadRunner Professional telemetry instances
      • LoadRunner Enterprise provider
        • Install LoadRunner Enterprise provider
        • Create LoadRunner Enterprise telemetry instances
      • AWS provider
        • Install AWS provider
        • Create AWS telemetry instances
    • Integrating Configuration Management
    • Integrating Value Stream Delivery
    • Integrating Load Testing
      • Integrating NeoLoad
      • Integrating Load Runner Professional
      • Integrating LoadRunner Enterprise
  • Akamas Reference
    • Glossary
      • System
      • Component
      • Metric
      • Parameter
      • Component Type
      • Workflow
      • Telemetry Provider
      • Telemetry Instance
      • Optimization Pack
      • Goals & Constraints
      • KPI
      • Optimization Study
      • Offline Optimization Study
      • Live Optimization Study
      • Workspace
    • Construct templates
      • System template
      • Component template
      • Parameter template
      • Metric template
      • Component Types template
      • Telemetry Provider template
      • Telemetry Instance template
      • Workflows template
      • Study template
        • Goal & Constraints
        • Windowing policy
          • Trim windowing
          • Stability windowing
        • Parameter selection
        • Metric selection
        • Workload selection
        • KPIs
        • Steps
          • Baseline step
          • Bootstrap step
          • Preset step
          • Optimize step
        • Parameter rendering
        • Optimizer Options
    • Workflow Operators
      • General operator arguments
      • Executor Operator
      • FileConfigurator Operator
      • LinuxConfigurator Operator
      • WindowsExecutor Operator
      • WindowsFileConfigurator Operator
      • Sleep Operator
      • OracleExecutor Operator
      • OracleConfigurator Operator
      • SparkSSHSubmit Operator
      • SparkSubmit Operator
      • SparkLivy Operator
      • NeoLoadWeb Operator
      • LoadRunner Operator
      • LoadRunnerEnteprise Operator
    • Telemetry metric mapping
      • Dynatrace metrics mapping
      • Prometheus metrics mapping
      • NeoLoadWeb metrics mapping
      • Spark History Server metrics mapping
      • LoadRunner metrics mapping
    • Optimization Packs
      • Linux optimization pack
        • Amazon Linux
        • Amazon Linux 2
        • Amazon Linux 2022
        • CentOS 7
        • CentOS 8
        • RHEL 7
        • RHEL 8
        • Ubuntu 16.04
        • Ubuntu 18.04
        • Ubuntu 20.04
      • DotNet optimization pack
        • DotNet Core 3.1
      • Java OpenJDK optimization pack
        • Java OpenJDK 8
        • Java OpenJDK 11
        • Java OpenJDK 17
      • OpenJ9 optimization pack
        • IBM J9 VM 6
        • IBM J9 VM 8
        • Eclipse Open J9 11
      • Node JS optimization pack
        • Node JS 18
      • GO optimization pack
        • GO 1
      • Web Application optimization pack
        • Web Application
      • Docker optimization pack
        • Container
      • Kubernetes optimization pack
        • Kubernetes Pod
        • Kubernetes Container
        • Kubernetes Workload
        • Kubernetes Namespace
        • Kubernetes Cluster
      • WebSphere optimization pack
        • WebSphere 8.5
        • WebSphere Liberty ND
      • AWS optimization pack
        • EC2
        • Lambda
      • PostgreSQL optimization pack
        • PostgreSQL 11
        • PostgreSQL 12
      • Cassandra optimization pack
        • Cassandra
      • MySQL Database optimization pack
        • MySQL 8.0
      • Oracle Database optimization pack
        • Oracle Database 12c
        • Oracle Database 18c
        • Oracle Database 19c
        • RDS Oracle Database 11g
        • RDS Oracle Database 12c
      • MongoDB optimization pack
        • MongoDB 4
        • MongoDB 5
      • Elasticsearch optimization pack
        • Elasticsearch 6
      • Spark optimization pack
        • Spark Application 2.2.0
        • Spark Application 2.3.0
        • Spark Application 2.4.0
    • Command Line commands
      • Administration commands
      • User and Workspace management commands
      • Authentication commands
      • Resource management commands
      • Optimizer options commands
    • Release Notes
  • Knowledge Base
    • Setting up a Konakart environment for testing Akamas
    • Modeling a sample Java-based e-commerce application (Konakart)
    • Optimizing a web application
    • Optimizing a sample Java OpenJ9 application
    • Optimizing a sample Java OpenJDK application
    • Optimizing a sample Linux system
    • Optimizing a MongoDB server instance
    • Optimizing a Kubernetes application
    • Leveraging Ansible to automate AWS instance management
    • Guidelines for optimizing AWS EC2 instances
    • Optimizing a sample application running on AWS
    • Optimizing a Spark application
    • Optimizing an Oracle Database server instance
    • Optimizing an Oracle Database for an e-commerce service
    • Guidelines for optimizing Oracle RDS
    • Optimizing a MySQL server database running Sysbench
    • Optimizing a MySQL server database running OLTPBench
    • Optimizing cost of a Kubernetes application while preserving SLOs in production
    • Optimizing a live full-stack deployment (K8s + JVM)
    • Setup Instana Integration
  • Akamas Free Trial
Powered by GitBook
On this page
  • Prerequisites
  • Supported versions
  • User and WinRM configuration
  • Configuration options
  • Required properties
  • Operator arguments
  • Examples

Was this helpful?

Export as PDF
  1. Akamas Reference
  2. Workflow Operators

LoadRunner Operator

Last updated 1 year ago

Was this helpful?

This page introduces the LoadRunner operator, a workflow operator that allows piloting performance tests on a target system by leveraging Micro Focus LoadRunner. This page assumes you are familiar with the definition of a workflow and its tasks. If it is not the case, then check .

Prerequisites

This section provides the minimum requirements that you should meet to use this operator.

Supported versions

  • Micro Focus LoadRunner 12.60 or 2020

  • Microsoft Windows Server 2016 or 2019

    • Powershell version 5.1 or greater

User and WinRM configuration

To configure WinRM to allow Akamas to launch tests please read the page.

All LoadRunner test files (VuGen scripts and folder, lrs files) and their parent folders, must be readable and writable by the user account used by Akamas.

Configuration options

When you define a task that uses the LoadRunner operator you should specify some configuration information to allow the operator to connect to the LoadRunner controller and execute a provided test scenario.

You can specify configuration information within the arguments that are part of a task in the YAML of the definition of a workflow.

You can avoid specifying each configuration information at the task level, by including a component property with the name of a component; in this way, the operator will take any configuration information from the properties of the referenced component

Required properties

  • controller - a set of pieces of information useful for connecting to the LoadRunner controller

  • scenarioFile - the path to the scenario file within the LoadRunner controller to execute the performance test

  • resultFolder - the path to the performance tests results folder with the LoadRunner controller

Connect to a LoadRunner controller

To make it possible for the operator to connect to a LoadRunner controller to execute a performance test you can use the controller property within the workflow task definition:

controller:
  hostname: loarrunner.example.com
  username: Domain\LoadRunnerUser
  password: j(sBdH5fsG9.I56P%7n2XPjmgO6!ARm=

Operator arguments

This table reports the configuration reference for the arguments section.

Field
Type
Value restrictions
Required
Default
Description

controller

Object

Yes

The information required to connect to LoadRunner controller machine.

component

String

No

The name of the component from which the operator will take its configuration options

scenarioFile

String

Matches an existing file within the LoadRunner controller

Yes

The LoadRunner scenario file to execute the performance test.

resultFolder

String

Yes

The folder, on the controller, where Loadrunner will put the results of a performance test.

You can use the placeholders {study}, {exp}, {trial} to generate a path that is unique for the running Akamas trial.

It can be a local path on the controller or on a network share

loadrunnerResOverride

String

A valid name for a Windows folder

No

res

The folder name where LoadRunner save the analysis results.

The default value can be changed in the LoadRunner controller.

timeout

String

The string must contain a numeric value followed by a suffix (s, m, h, d).

No

2h

The timeout for the Loadrunner scenario. If Loadrunner doesn’t finish the scenario within the specified amount of time, Akamas will consider the workflow as failed.

checkFrequency

String

The string must contain a numeric value followed by a suffix (s, m, h, d).

No

1m

The interval at which Akamas check’s the status of the Loadrunner scenario.

executable

String

A valid windows path

No

C:\Program Files (x86)\Micro Focus\LoadRunner\bin\Wlrun.exe

The LoadRunner executable path

Important notice: remember to escape your path with four backslashes (e.g. C:\\\\Users\\\\\...)

Controller arguments

This table reports the configuration reference for the controller section, which is an object with the following fields:

Field
Type
Value restrictions
Required
Default
Description

component

String

No

The name of the component from which the operator will take its configuration options.

scenarioFile

String

Matches an existing file within the LoadRunner controller

Yes

The LoadRunner scenario file to execute the performance test.

resultFolder

String

Yes

The folder, on the controller, where Loadrunner will put the results of a performance test.

You can use the placeholders {study}, {exp}, {trial} to generate a path that is unique for the running Akamas trial.

It can be a local path on the controller or on a network share.

loadrunnerResOverride

String

A valid name for a Windows folder

No

res

The folder name where LoadRunner save the analysis results.

The default value can be changed in the LoadRunner controller.

timeout

String

The string must contain a numeric value followed by a suffix (s, m, h, d).

No

2h

The timeout for the Loadrunner scenario. If Loadrunner doesn’t finish the scenario within the specified amount of time, Akamas will consider the workflow as failed.

checkFrequency

String

The string must contain a numeric value followed by a suffix (s, m, h, d).

No

1m

The interval at which Akamas check’s the status of the Loadrunner scenario.

executable

String

A valid windows path

No

C:\Program Files (x86)\Micro Focus\LoadRunner\bin\Wlrun.exe

The LoadRunner executable path.

Important notice: remember to escape your path with four backslashes (e.g. C:\\\\Users\\\\\...)

Examples

A simple performance test

name: "task1"
operator: "LoadRunner"
arguments:
  controller:
    hostname: loarrunner.example.com
    username: Domain\LoadRunnerUser
    password: j(sBdH5fsG9.I56P%7n2XPjmgO6!ARm=
  scenarioFile: 'C:\Users\LoadRunnerUser\Desktop\test\scenario\Scenario1.lrs'
  resultFolder: 'c:\Temp\{study}\{exp}\{trial}'
  timeout: 15m
  checkFrequency: 30s
Creating automation workflows
Integrating LoadRunner Professional