Akamas Docs
3.5
3.5
  • Home
  • Getting started
    • Introduction
    • Free Trial
    • Licensing
    • Deployment
      • Cloud Hosting
    • Security
    • Maintenance & Support (M&S) Services
      • Customer Support Services
      • Support levels for Customer Support Services
      • Support levels for software versions
      • Support levels with Akamas
  • Installing
    • Architecture
    • Docker compose installation
      • Prerequisites
        • Hardware Requirements
        • Software Requirements
        • Network requirements
      • Install Akamas dependencies
      • Install the Akamas Server
        • Online installation mode
          • Online installation behind a Proxy server
        • Offline installation mode
        • Changing UI Ports
        • Setup HTTPS configuration
      • Troubleshoot Docker installation issues
    • Kubernetes installation
      • Prerequisites
        • Cluster Requirements
        • Software Requirements
      • Install Akamas
        • Online Installation
        • Offline Installation - Private registry
      • Installing on OpenShift
      • Accessing Akamas
      • Useful commands
    • Install the CLI
      • Setup the CLI
      • Initialize the CLI
      • Change CLI configuration
      • Use a proxy server
    • Verify the installation
    • Installing the toolbox
    • Install the license
    • Manage anonymous data collection
  • Managing Akamas
    • Akamas logs
    • Audit logs
    • Upgrade Akamas
      • Docker compose
      • Kubernetes
    • Monitor Akamas status
    • Backup & Recover of the Akamas Server
    • Users management
      • Accessing Keycloak admin console
      • Configure an external identity provider
        • Azure Active Directory
        • Google
      • Limit users sessions
        • Local users
        • Identity provider users
    • Collecting support information
  • Using
    • System
    • Telemetry
    • Workflow
    • Study
      • Offline Study
      • Live Study
        • Analyzing results of live optimization studies
      • Windowing
      • Parameters and constraints
  • Optimization Guides
    • Optimize application costs and resource efficiency
      • Kubernetes microservices
        • Optimize cost of a Kubernetes deployment subject to Horizontal Pod Autoscaler
        • Optimize cost of a Kubernetes microservice while preserving SLOs in production
        • Optimize cost of a Java microservice on Kubernetes while preserving SLOs in production
      • Application runtime
        • Optimizing a sample Java OpenJDK application
        • Optimizing cost of a Node.js application with performance tests
        • Optimizing cost of a Golang application with performance tests
        • Optimizing cost of a .NET application with performance tests
      • Applications running on cloud instances
        • Optimizing a sample application running on AWS
      • Spark applications
        • Optimizing a Spark application
    • Optimize application performance and reliability
      • Kubernetes microservices
        • Optimizing cost of a Kubernetes microservice while preserving SLOs in production
        • Optimizing cost of a Java microservice on Kubernetes while preserving SLOs in production
      • Applications running on cloud instances
      • Spark applications
  • Integrating
    • Integrating Telemetry Providers
      • CSV provider
        • Install CSV provider
        • Create CSV telemetry instances
      • Dynatrace provider
        • Install Dynatrace provider
        • Create Dynatrace telemetry instances
          • Import Key Requests
      • Prometheus provider
        • Install Prometheus provider
        • Create Prometheus telemetry instances
        • CloudWatch Exporter
        • OracleDB Exporter
      • Spark History Server provider
        • Install Spark History Server provider
        • Create Spark History Server telemetry instances
      • NeoLoadWeb provider
        • Install NeoLoadWeb telemetry provider
        • Create NeoLoadWeb telemetry instances
      • LoadRunner Professional provider
        • Install LoadRunner Professional provider
        • Create LoadRunner Professional telemetry instances
      • LoadRunner Enterprise provider
        • Install LoadRunner Enterprise provider
        • Create LoadRunner Enterprise telemetry instances
      • AWS provider
        • Install AWS provider
        • Create AWS telemetry instances
    • Integrating Configuration Management
    • Integrating with pipelines
    • Integrating Load Testing
      • Integrating NeoLoad
      • Integrating LoadRunner Professional
      • Integrating LoadRunner Enterprise
  • Reference
    • Glossary
      • System
      • Component
      • Metric
      • Parameter
      • Component Type
      • Workflow
      • Telemetry Provider
      • Telemetry Instance
      • Optimization Pack
      • Goals & Constraints
      • KPI
      • Optimization Study
      • Workspace
      • Safety Policies
    • Construct templates
      • System template
      • Component template
      • Parameter template
      • Metric template
      • Component Types template
      • Telemetry Provider template
      • Telemetry Instance template
      • Workflows template
      • Study template
        • Goal & Constraints
        • Windowing policy
          • Trim windowing
          • Stability windowing
        • Parameter selection
        • Metric selection
        • Workload selection
        • KPIs
        • Steps
          • Baseline step
          • Bootstrap step
          • Preset step
          • Optimize step
        • Parameter rendering
        • Optimizer Options
    • Workflow Operators
      • General operator arguments
      • Executor Operator
      • FileConfigurator Operator
      • LinuxConfigurator Operator
      • WindowsExecutor Operator
      • WindowsFileConfigurator Operator
      • Sleep Operator
      • OracleExecutor Operator
      • OracleConfigurator Operator
      • SparkSSHSubmit Operator
      • SparkSubmit Operator
      • SparkLivy Operator
      • NeoLoadWeb Operator
      • LoadRunner Operator
      • LoadRunnerEnteprise Operator
    • Telemetry metric mapping
      • Dynatrace metrics mapping
      • Prometheus metrics mapping
      • NeoLoadWeb metrics mapping
      • Spark History Server metrics mapping
      • LoadRunner metrics mapping
    • Optimization Packs
      • Linux optimization pack
        • Amazon Linux
        • Amazon Linux 2
        • Amazon Linux 2022
        • CentOS 7
        • CentOS 8
        • RHEL 7
        • RHEL 8
        • Ubuntu 16.04
        • Ubuntu 18.04
        • Ubuntu 20.04
      • DotNet optimization pack
        • DotNet Core 3.1
      • Java OpenJDK optimization pack
        • Java OpenJDK 8
        • Java OpenJDK 11
        • Java OpenJDK 17
      • OpenJ9 optimization pack
        • IBM J9 VM 6
        • IBM J9 VM 8
        • Eclipse Open J9 11
      • Node JS optimization pack
        • Node JS 18
      • GO optimization pack
        • GO 1
      • Web Application optimization pack
        • Web Application
      • Docker optimization pack
        • Container
      • Kubernetes optimization pack
        • Kubernetes Pod
        • Kubernetes Container
        • Kubernetes Workload
        • Kubernetes Namespace
        • Kubernetes Cluster
      • WebSphere optimization pack
        • WebSphere 8.5
        • WebSphere Liberty ND
      • AWS optimization pack
        • EC2
        • Lambda
      • PostgreSQL optimization pack
        • PostgreSQL 11
        • PostgreSQL 12
      • Cassandra optimization pack
        • Cassandra
      • MySQL Database optimization pack
        • MySQL 8.0
      • Oracle Database optimization pack
        • Oracle Database 12c
        • Oracle Database 18c
        • Oracle Database 19c
        • RDS Oracle Database 11g
        • RDS Oracle Database 12c
      • MongoDB optimization pack
        • MongoDB 4
        • MongoDB 5
      • Elasticsearch optimization pack
        • Elasticsearch 6
      • Spark optimization pack
        • Spark Application 2.2.0
        • Spark Application 2.3.0
        • Spark Application 2.4.0
    • Command Line commands
      • Administration commands
      • User and Workspace management commands
      • Authentication commands
      • Resource management commands
      • Optimizer options commands
    • Release Notes
  • Knowledge Base
    • Creating custom optimization packs
    • Setting up a Konakart environment for testing Akamas
    • Modeling a sample Java-based e-commerce application (Konakart)
    • Optimizing a web application
    • Optimizing a sample Java OpenJ9 application
    • Optimizing a sample Linux system
    • Optimizing a MongoDB server instance
    • Optimizing a Kubernetes application
    • Leveraging Ansible to automate AWS instance management
    • Guidelines for optimizing AWS EC2 instances
    • Optimizing an Oracle Database server instance
    • Optimizing an Oracle Database for an e-commerce service
    • Guidelines for optimizing Oracle RDS
    • Optimizing a MySQL server database running Sysbench
    • Optimizing a MySQL server database running OLTPBench
    • Optimizing a live full-stack deployment (K8s + JVM)
    • Setup Instana integration
Powered by GitBook
On this page
  • Environment setup
  • Telemetry Infrastructure setup
  • Optimization setup
  • System
  • Component jvm
  • Workflow
  • Telemetry
  • Study

Was this helpful?

Export as PDF
  1. Knowledge Base

Optimizing a sample Java OpenJ9 application

Last updated 1 year ago

Was this helpful?

In this example study we’ll tune the parameters of PageRank, one of the benchmarks available in the , to minimize its memory usage. Application monitoring is provided by Prometheus, leveraging a JMX exporter.

Environment setup

The test environment includes the following instances:

  • Akamas: instance running Akamas

  • PageRank: instance running the PageRank benchmark and the Prometheus monitoring service

Telemetry Infrastructure setup

To gather metrics about PageRank we will use a Prometheus and a JMX exporter. Here’s the scraper to add to the Prometheus configuration to extract the metrics from the exporter:

- job_name: jmx-exporter
  static_configs:
    - targets: ['pagerank.akamas.io:5556']
      labels:
        instance: jvm

Application and Test tool

To run and monitor the benchmark we’ll require on the PageRank instance:

  • The

  • The , plus a configuration file to expose the required classes

Here’s the snippet of code to configure the instance as required for this guide:

mkdir renaissance; cd renaissance
wget -O renaissance.jar https://github.com/renaissance-benchmarks/renaissance/releases/download/v0.10.0/renaissance-gpl-0.10.0.jar
wget -O jmx_exporter.jar https://repo1.maven.org/maven2/io/prometheus/jmx/jmx_prometheus_javaagent/0.14.0/jmx_prometheus_javaagent-0.14.0.jar
echo -e '--\nwhitelistObjectNames: ["java.lang:*"]' > conf.yaml

Optimization setup

In this section, we will guide you through the steps required to set up the optimization on Akamas.

System

System pagerank

Here’s the definition of the system we will use to group our components and telemetry-instances for this example:

name: pagerank
description: A system to tune the pagerank benchmark

To create the system run the following command:

akamas create system pagerank.yaml

Component jvm

Here’s the definition of the component:

name: jvm
componentType: java-ibm-j9vm-8
properties:
  prometheus:
    instance: jvm
    job: jmx-exporter

To create the component in the system run the following command:

akamas create component jvm.yaml pagerank

Workflow

The workflow used for this study consists of two main stages:

  • generate the configuration file containing the tested OpenJ9 parameters

  • run the execution using previously written parameters

Here’s the definition of the workflow:

name: run-pagerank
tasks:
  - name: Configure parameters
    operator: FileConfigurator
    arguments:
      source:
        hostname: pagerank.akamas.io
        username: ubuntu
        path: /home/ubuntu/renaissance/j9_opts.template
        key: key
      target:
        hostname: pagerank.akamas.io
        username: ubuntu
        path: /home/ubuntu/renaissance/j9_opts
        key: key

  - name: Run benchmark
    operator: Executor
    arguments:
      command: "cd renaissance; java -javaagent:./jmx_exporter.jar=5556:conf.yaml $(cat j9_opts) -jar renaissance.jar -r 2 page-rank"
      host:
        hostname: pagerank.akamas.io
        username: ubuntu
        key: key

Where the configuration template is j9_opts.template is defined as follows:

 ${jvm.j9vm_gcPolicy} ${jvm.j9vm_maxHeapSize} ${jvm.j9vm_newSpaceFixed} ${jvm.j9vm_minFreeHeap} ${jvm.j9vm_maxFreeHeap} ${jvm.j9vm_gcThreads}

To create the workflow run the following command:

akamas create workflow workflow.yaml

Telemetry

The following is the definition of the telemetry instance that fetches metrics from the Prometheus service:

provider: Prometheus
config:
  address: pagerank.akamas.io
  port: 9090

To create the telemetry instance in the system run the following command:

akamas create telemetry-instance prometheus.yaml pagerank

This telemetry instance will be able to bind the fetched metrics to the related jvm component thanks to the prometheus attribute we previously added in its definition.

Study

The goal of this study is to find a JVM configuration that minimizes the peak memory used by the benchmark.

The optimized parameters are the maximum heap size, the garbage collector used and several other parameters managing the new and old heap areas. We also specify a constraint stating that the GC regions can’t exceed the total heap available, to avoid experimenting with parameter configurations that can’t start in the first place.

Here’s the definition of the study:

name: Optimize PageRank
description: Tweaking the Eclipse OpenJ9 parameters to optimize the page-rank benchmark.
system: pagerank
workflow: run-pagerank

goal:
  objective: minimize
  function:
    formula: memory_used:max
    variables:
      memory_used:
        metric: jvm.jvm_memory_used

parametersSelection:
  - name: jvm.j9vm_gcPolicy
  - name: jvm.j9vm_maxHeapSize
    domain: [1250, 2000]
  - name: jvm.j9vm_newSpaceFixed
    domain: [350, 2000]
  - name: jvm.j9vm_minFreeHeap
  - name: jvm.j9vm_maxFreeHeap
  - name: jvm.j9vm_gcThreads

parameterConstraints:
  - name: Max heap must always be greater than the new size
    formula: jvm.j9vm_maxHeapSize > jvm.j9vm_newSpaceFixed
  - name: Max free always greater than min free
    formula: jvm.j9vm_minFreeHeap + 0.05 < jvm.j9vm_maxFreeHeap

steps:
  - name: baseline
    type: baseline
    values:
      jvm.jvm_gcType: gencon
      jvm.jvm_maxHeapSize: 2000

  - name: optimize
    type: optimize
    numberOfExperiments: 30

To create and run the study execute the following commands:

akamas create study study.yaml
akamas start study 'Optimize PageRank'

If you have not installed the Eclipse OpenJ9 optimization pack yet, take a look at the optimization pack page to proceed with the installation.

We’ll use a component of type to represent the JVM underlying the PageRank benchmark. To identify the JMX-related metrics in Prometheus the configuration requires the prometheus property for the telemetry service, detailed later in this guide.

Renaissance suite
Renaissance jar
JMX exporter agent
Eclipse OpenJ9
IBM J9 VM 8