Quick Guides
  • Free Trial options
  • Quick Guides: Akamas in a sandbox
    • [AIAS-01] Guide: Explore an Optimization Study for a Kubernetes microservices application
      • [AIAS-01] Architecture overview
      • [AIAS-01] Explore the Study
      • [AIAS-01] Explore the System
      • [AIAS-01] Explore the Workflow
      • [AIAS-01] Explore the analysis
      • [AIAS-01] Explore the results
    • [AIAS-02] Guide: Create a study to optimize Java performance using the Akamas UI
      • [AIAS-02] Architecture overview
      • [AIAS-02] Create the Study
      • [AIAS-02] Define the optimization goal
      • [AIAS-02] Define the optimization parameters
      • [AIAS-02] Define the performance metrics
      • [AIAS-02] Define the optimization steps
      • [AIAS-02] Explore the results
    • [AIAS-03] Guide: Create a study to optimize K8s microservices costs using the Akamas CLI
      • [AIAS-03] Architecture overview
      • [AIAS-03] Create the system
      • [AIAS-03] Create the Workflow
      • [AIAS-03] Create the Study
      • [AIAS-03] Explore the results
  • Quick Guides: Akamas in a box
    • [AIAB-00] Install Akamas-in-a-box
      • [AIAB-00] Setup your Linux box
      • [AIAB-00] Install Akamas
    • [AIAB-01] Optimize a Java-based application (Renaissance benchmark)
      • [AIAB-01] Architecture overview
      • [AIAB-01] Create the System and its associated components
      • [AIAB-01] Configure the Telemetry
      • [AIAB-01] Create the workflow
      • [AIAB-01] Create and run the study
      • [AIAB-01] Explore the results
    • [AIAB-02] Optimize a Java-based application (Konakart) with JMeter
      • [AIAB-02] Architecture overview
      • [AIAB-02] Create the system and its components
      • [AIAB-02] Automate performance tests
      • [AIAB-02] Create the Telemetry Provider
      • [AIAB-02] Create the workflow
      • [AIAB-02] Create the study
      • [AIAB-02] Explore the results
    • [AIAB-03] Optimize a Java-based application (Konakart) with LRE
      • [AIAB-03] Architecture overview
      • [AIAB-03] Setup LoadRunner Enterprise
      • [AIAB-03] Create the system and its components
      • [AIAB-03] Create the telemetry instances
      • [AIAB-03] Create the workflow
      • [AIAB-03] Create the optimization study
    • [AIAB-04] Optimize a Java-based Kubernetes application (Online Boutique)
      • [AIAB-04] Architecture overview and setup
      • [AIAB-04] Setup Online Boutique
      • [AIAB-04] Setup Akamas
      • [AIAB-04] Create the system and its components
      • [AIAB-04] Create the workflow
      • [AIAB-04] Create the Study
      • [AIAB-04] Explore the results
Powered by GitBook
On this page

Was this helpful?

Export as PDF
  1. Quick Guides: Akamas in a box
  2. [AIAB-03] Optimize a Java-based application (Konakart) with LRE

[AIAB-03] Architecture overview

Previous[AIAB-03] Optimize a Java-based application (Konakart) with LRENext[AIAB-03] Setup LoadRunner Enterprise

Last updated 2 years ago

Was this helpful?

The following picture represents the high-level architecture of how Akamas operates in this scenario.

Here are the main elements:

  • The target system to be optimized is Konakart, a real-world e-commerce web application based on Java and running as a Docker container within a dedicated cloud instance - in this guide, the goal is to optimize Konakart throughput and response time

  • The optimization scope in the Konakart Java Virtual Machine (JVM) with the configuration of the JVM parameters specified in a Docker configuration file on the Konakart cloud instance

  • The optimization experiments leverage LoadRunner Enterprise as a load-testing tool

  • The optimization results leverage Prometheus as a telemetry provider to collect JVM and OS-level metrics.