Akamas Docs
3.1.2
3.1.2
  • How to use this documentation
  • Getting started with Akamas
    • Introduction to Akamas
    • Licensing
    • Deployment
      • Cloud Hosting
    • Security
    • Maintenance & Support (M&S) Services
      • Customer Support Services
      • Support levels for Customer Support Services
      • Support levels for software versions
      • Support levels with Akamas 3.1
  • Installing Akamas
    • Akamas Architecture
    • Prerequisites
      • Hardware Requirements
      • Software Requirements
      • Network requirements
    • Install Akamas dependencies
    • Install the Akamas Server
      • Online installation mode
        • Online installation behind a Proxy server
      • Offline installation mode
      • Changing UI Ports
      • Setup HTTPS configuration
    • Install the Akamas CLI
      • Setup the Akamas CLI
      • Verify the Akamas CLI
      • Initialize Akamas CLI
      • Change CLI configuration
    • Verify the Akamas Server
    • Install the Akamas license
    • Manage anonymous data collection
    • Install an Akamas Workstation
    • Troubleshoot install issues
    • Manage the Akamas Server
      • Akamas logs
      • Audit logs
      • Install upgrades and patches
      • Monitor the Akamas Server
      • Backup & Recover of the Akamas Server
  • Using Akamas
    • General optimization process and methodology
    • Preparing optimization studies
      • Modeling systems
      • Modeling components
        • Creating custom optimization packs
        • Managing optimization packs
      • Creating telemetry instances
      • Creating automation workflows
        • Creating workflows for offline studies
        • Performing load testing to support optimization activities
        • Creating workflows for live optimizations
      • Creating optimization studies
        • Defining optimization goal & constraints
        • Defining windowing policies
        • Defining KPIs
        • Defining parameters & metrics
        • Defining workloads
        • Defining optimization steps
        • Setting safety policies
    • Running optimization studies
      • Before running optimization studies
      • Analyzing results of offline optimization studies
        • Optimization Insights
      • Analyzing results of live optimization studies
      • Before applying optimization results
    • Guidelines for choosing optimization parameters
      • Guidelines for JVM (OpenJ9)
      • Guidelines for JVM layer (OpenJDK)
      • Guidelines for Oracle Database
      • Guidelines for PostgreSQL
    • Guidelines for defining optimization studies
      • Optimizing Linux
      • Optimizing Java OpenJDK
      • Optimizing OpenJ9
      • Optimizing Web Applications
      • Optimizing Kubernetes
      • Optimizing Spark
      • Optimizing Oracle Database
      • Optimizing MongoDB
      • Optimizing MySQL Database
      • Optimizing PostgreSQL
  • Integrating Akamas
    • Integrating Telemetry Providers
      • CSV provider
        • Install CSV provider
        • Create CSV provider instances
      • Dynatrace provider
        • Install Dynatrace provider
        • Create Dynatrace provider instances
      • Prometheus provider
        • Install Prometheus provider
        • Create Prometheus provider instances
        • CloudWatch Exporter
        • OracleDB Exporter
      • Spark History Server provider
        • Install Spark History Server provider
        • Create Spark History Server provider instances
      • NeoLoadWeb provider
        • Setup NeoLoadWeb telemetry provider
        • Create NeoLoadWeb provider instances
      • LoadRunner Professional provider
        • Install LoadRunner Professional provider
        • Create LoadRunner Professional provider instances
      • LoadRunner Enterprise provider
        • Install LoadRunner Enterprise provider
        • Create LoadRunner Enterprise provider instances
      • AWS provider
        • Install AWS provider
        • Create AWS provider instances
    • Integrating Configuration Management
    • Integrating Value Stream Delivery
    • Integrating Load Testing
      • Integrating NeoLoad
      • Integrating Load Runner Professional
      • Integrating LoadRunner Enterprise
  • Akamas Reference
    • Glossary
      • System
      • Component
      • Metric
      • Parameter
      • Component Type
      • Workflow
      • Telemetry Provider
      • Telemetry Instance
      • Optimization Pack
      • Goals & Constraints
      • KPI
      • Optimization Study
      • Offline Optimization Study
      • Live Optimization Study
      • Workspace
    • Construct templates
      • System template
      • Component template
      • Parameter template
      • Metric template
      • Component Types template
      • Telemetry Provider template
      • Telemetry Instance template
      • Workflows template
      • Study template
        • Goal & Constraints
        • Windowing policy
          • Trim windowing
          • Stability windowing
        • Parameter selection
        • Metric selection
        • Workload selection
        • KPIs
        • Steps
          • Baseline step
          • Bootstrap step
          • Preset step
          • Optimize step
        • Parameter rendering
    • Workflow Operators
      • General operator arguments
      • Executor Operator
      • FileConfigurator Operator
      • LinuxConfigurator Operator
      • WindowsExecutor Operator
      • WindowsFileConfigurator Operator
      • Sleep Operator
      • OracleExecutor Operator
      • OracleConfigurator Operator
      • SparkSSHSubmit Operator
      • SparkSubmit Operator
      • SparkLivy Operator
      • NeoLoadWeb Operator
      • LoadRunner Operator
      • LoadRunnerEnteprise Operator
    • Telemetry metric mapping
      • Dynatrace metrics mapping
      • Prometheus metrics mapping
      • NeoLoadWeb metrics mapping
      • Spark History Server metrics mapping
      • LoadRunner metrics mapping
    • Optimization Packs
      • Linux optimization pack
        • Amazon Linux
        • Amazon Linux 2
        • Amazon Linux 2022
        • CentOS 7
        • CentOS 8
        • RHEL 7
        • RHEL 8
        • Ubuntu 16.04
        • Ubuntu 18.04
        • Ubuntu 20.04
      • DotNet optimization pack
        • DotNet Core 3.1
      • Java-OpenJDK optimization pack
        • Java OpenJDK 8
        • Java OpenJDK 11
      • OpenJ9 optimization pack
        • IBM J9 VM 6
        • IBM J9 VM 8
        • Eclipse Open J9 11
      • NodeJS optimization pack
        • NodeJS
      • GO optimization pack
        • GO 1
      • Web Application optimization pack
        • Web Application
      • Docker optimization pack
        • Container
      • Kubernetes optimization pack
        • Kubernetes Pod
        • Kubernetes Container
        • Kubernetes Workload
        • Kubernetes Namespace
        • Kubernetes Cluster
      • WebSphere optimization pack
        • WebSphere 8.5
        • WebSphere Liberty ND
      • AWS optimization pack
        • EC2
        • Lambda
      • PostgreSQL optimization pack
        • PostgreSQL 11
        • PostgreSQL 12
      • Cassandra optimization pack
        • Cassandra
      • MySQL Database optimization pack
        • MySQL 8.0
      • Oracle Database optimization pack
        • Oracle Database 12c
        • Oracle Database 18c
        • Oracle Database 19c
        • RDS Oracle Database 11g
        • RDS Oracle Database 12c
      • MongoDB optimization pack
        • MongoDB 4
        • MongoDB 5
      • Elasticsearch optimization pack
        • Elasticsearch 6
      • Spark optimization pack
        • Spark Application 2.2.0
        • Spark Application 2.3.0
        • Spark Application 2.4.0
    • Command Line commands
      • Administration commands
      • User and Workspace management commands
      • Authentication commands
      • Resource management commands
      • Optimizer options commands
  • Knowledge Base
    • Setting up a Konakart environment for testing Akamas
    • Modeling a sample Java-based e-commerce application (Konakart)
    • Optimizing a web application
    • Optimizing a sample Java OpenJ9 application
    • Optimizing a sample Java OpenJDK application
    • Optimizing a sample Linux system
    • Optimizing a MongoDB server instance
    • Optimizing a Kubernetes application
    • Leveraging Ansible to automate AWS instance management
    • Guidelines for optimizing AWS EC2 instances
    • Optimizing a sample application running on AWS
    • Optimizing a Spark application
    • Optimizing an Oracle Database server instance
    • Optimizing an Oracle Database for an e-commerce service
    • Guidelines for optimizing Oracle RDS
    • Optimizing a MySQL server database running Sysbench
    • Optimizing a MySQL server database running OLTPBench
    • Optimizing a live K8s deployment
    • Optimizing a live full-stack deployment (K8s + JVM)
  • Akamas Free Trial
Powered by GitBook
On this page
  • Suggested Parameters for OpenJ9
  • Tuning JVM Heap
  • Tuning JVM Garbage Collection
  • Tuning JVM compilation
  • Tuning JVM aggressive optimizations

Was this helpful?

Export as PDF
  1. Using Akamas
  2. Guidelines for choosing optimization parameters

Guidelines for JVM (OpenJ9)

Last updated 1 year ago

Was this helpful?

Suggested Parameters for OpenJ9

  • j9vm_minFreeHeap

  • j9vm_maxFreeHeap

  • j9vm_minHeapSize

  • j9vm_maxHeapSize

  • j9vm_gcCompact

  • j9vm_gcThreads

  • j9vm_gcPolicy

  • j9vm_codeCacheTotal

  • j9vm_compilationThreads

  • j9vm_aggressiveOpts

The following describes how to approach tuning JVM in the following areas:

Tuning JVM Heap

The most relevant JVM parameters are the ones defining the boundaries of the allocated heap (j9vm_minHeapSize, j9vm_maxHeapSize). The upper bound to configure for this domain strongly depends on the memory in megabytes available on the host instance or on how much we are willing to allocate, while the lower bound depends on the minimum requirements to run the application.

The free heap parameters (j9vm_minFreeHeap, j9vm_maxFreeHeap) define some boundaries for the free space target ratio, which impacts the trigger thresholds of the garbage collector. The suggested starting ranges are from 0.1 and 0.6 for the minimum free ratio range, and from 0.3 to 0.9 for the maximum.

The following represents a sample snippet of the section parametersSelection in the study definition:

parametersSelection:
  - name: jvm.j9vm_maxHeapSize
    domain: [<LOWER_BOUND>, <UPPER_BOUND>]
  - name: jvm.j9vm_minHeapSize
    domain: [<LOWER_BOUND>, <UPPER_BOUND>]

  - name: jvm.j9vm_minFreeHeap
    domain: [0.1, 0.6]
  - name: jvm.j9vm_maxFreeHeap
    domain: [0.3, 0.9]

It is also recommended to define the following constraints:

  • min heap size lower than or equal to the max heap size:

jvm.j9vm_minHeapSize <= jvm.j9vm_maxHeapSize
  • upper bound to be at least 5 percentage points higher than the lower bound

jvm.j9vm_minFreeHeap + 0.05 < jvm.j9vm_maxFreeHeap

Tuning JVM Garbage Collection

The following JVM parameters define the behavior of the garbage collector:

  • j9vm_gcPolicy

  • j9vm_gcThreads

  • j9vm_gcCompact

The garbage collection policy (j9vm_gcPolicy) defines the collection strategy used by the JVM. This parameter is key for the performance of the application: the default garbage collector (gencon) is the best solution for most scenarios, but some specific kinds of applications may benefit from one of the alternative options.

The number of GC threads (j9vm_gcThreads) defines the level of parallelism available to the collector. This value can range from 1 to the maximum number of CPUs that are available or we are willing to allocate.

The GC compaction (j9vm_gcCompact) selects if garbage collections perform full compactions always, never, or based on internal policies.

The following represents a sample snippet of the section parametersSelection in the study definition:

parametersSelection:
  - name: jvm.j9vm_gcPolicy
    categories: [balanced, gencon, metronome, optavgpause, optthruput]

  - name: jvm.j9vm_gcThreads
    domain: [1, <MAX_CPUS>]

  - name: jvm.j9vm_gcCompact

Tuning JVM compilation

The following JVM parameters define the behaviors of the compilation:

  • j9vm_compilationThreads

  • j9vm_codeCacheTotal

The compilation threads parameter (j9vm_compilationThreads) defines the number available for the JIT compiler. Its range depends on the available CPUs.

The code cache parameter (j9vm_codeCacheTotal) defines the maximum size limit for the JIT code cache. Higher values may benefit complex server-type applications, at the expense of the memory footprint, so should be taken into account in the overall memory requirements.

The following represents a sample snippet of the section parametersSelection in the study definition:

parametersSelection:
  - name: jvm.j9vm_compilationThreads
    domain: [1, <MAX_CPUS>]

  - name: jvm.j9vm_codeCacheTotal
    domain: [2, <UPPER_BOUND>]

Tuning JVM aggressive optimizations

The following JVM parameter defines the behavior of aggressive optimization:

  • j9vm_aggressiveOpts

Aggressive optimizations (j9vm_aggressiveOpts) enables some experimental features that usually lead to performance gains.

The following represents a sample snippet of the section parametersSelection in the study definition:

parametersSelection:
  - name: j9vm_aggressiveOpts
JVM Heap
JVM Garbage Collection
JVM compilation
JVM aggressive optimization