Optimizing Kubernetes
Workflows
Applying parameters
apiVersion: apps/v1
kind: Deployment
metadata:
name: nginx-deployment
spec:
selector:
matchLabels:
app: nginx
replicas: ${deployment.k8s_workload_replicas}
template:
metadata:
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx:1.14.2
ports:
- containerPort: 80
resources:
requests:
cpu: ${container.cpu_request}
memory: ${container.memory_request}
limits:
cpu: ${container.cpu_limit}
memory: ${container.memory_limit}apiVersion: apps/v1
kind: Deployment
metadata:
name: nginx-deployment
spec:
selector:
matchLabels:
app: nginx
replicas: ${deployment.k8s_workload_replicas}
template:
metadata:
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx:1.14.2
ports:
- containerPort: 80
resources:
requests:
cpu: ${container.cpu_request}
memory: ${container.memory_request}
limits:
cpu: ${container.cpu_limit}
memory: ${container.memory_limit}A typical workflow
Telemetry Providers
Examples
Last updated
Was this helpful?