Akamas Docs
3.5
3.5
  • Home
  • Getting started
    • Introduction
    • Free Trial
    • Licensing
    • Deployment
      • Cloud Hosting
    • Security
    • Maintenance & Support (M&S) Services
      • Customer Support Services
      • Support levels for Customer Support Services
      • Support levels for software versions
      • Support levels with Akamas
  • Installing
    • Architecture
    • Docker compose installation
      • Prerequisites
        • Hardware Requirements
        • Software Requirements
        • Network requirements
      • Install Akamas dependencies
      • Install the Akamas Server
        • Online installation mode
          • Online installation behind a Proxy server
        • Offline installation mode
        • Changing UI Ports
        • Setup HTTPS configuration
      • Troubleshoot Docker installation issues
    • Kubernetes installation
      • Prerequisites
        • Cluster Requirements
        • Software Requirements
      • Install Akamas
        • Online Installation
        • Offline Installation - Private registry
      • Installing on OpenShift
      • Accessing Akamas
      • Useful commands
    • Install the CLI
      • Setup the CLI
      • Initialize the CLI
      • Change CLI configuration
      • Use a proxy server
    • Verify the installation
    • Installing the toolbox
    • Install the license
    • Manage anonymous data collection
  • Managing Akamas
    • Akamas logs
    • Audit logs
    • Upgrade Akamas
      • Docker compose
      • Kubernetes
    • Monitor Akamas status
    • Backup & Recover of the Akamas Server
    • Users management
      • Accessing Keycloak admin console
      • Configure an external identity provider
        • Azure Active Directory
        • Google
      • Limit users sessions
        • Local users
        • Identity provider users
    • Collecting support information
  • Using
    • System
    • Telemetry
    • Workflow
    • Study
      • Offline Study
      • Live Study
        • Analyzing results of live optimization studies
      • Windowing
      • Parameters and constraints
  • Optimization Guides
    • Optimize application costs and resource efficiency
      • Kubernetes microservices
        • Optimize cost of a Kubernetes deployment subject to Horizontal Pod Autoscaler
        • Optimize cost of a Kubernetes microservice while preserving SLOs in production
        • Optimize cost of a Java microservice on Kubernetes while preserving SLOs in production
      • Application runtime
        • Optimizing a sample Java OpenJDK application
        • Optimizing cost of a Node.js application with performance tests
        • Optimizing cost of a Golang application with performance tests
        • Optimizing cost of a .NET application with performance tests
      • Applications running on cloud instances
        • Optimizing a sample application running on AWS
      • Spark applications
        • Optimizing a Spark application
    • Optimize application performance and reliability
      • Kubernetes microservices
        • Optimizing cost of a Kubernetes microservice while preserving SLOs in production
        • Optimizing cost of a Java microservice on Kubernetes while preserving SLOs in production
      • Applications running on cloud instances
      • Spark applications
  • Integrating
    • Integrating Telemetry Providers
      • CSV provider
        • Install CSV provider
        • Create CSV telemetry instances
      • Dynatrace provider
        • Install Dynatrace provider
        • Create Dynatrace telemetry instances
          • Import Key Requests
      • Prometheus provider
        • Install Prometheus provider
        • Create Prometheus telemetry instances
        • CloudWatch Exporter
        • OracleDB Exporter
      • Spark History Server provider
        • Install Spark History Server provider
        • Create Spark History Server telemetry instances
      • NeoLoadWeb provider
        • Install NeoLoadWeb telemetry provider
        • Create NeoLoadWeb telemetry instances
      • LoadRunner Professional provider
        • Install LoadRunner Professional provider
        • Create LoadRunner Professional telemetry instances
      • LoadRunner Enterprise provider
        • Install LoadRunner Enterprise provider
        • Create LoadRunner Enterprise telemetry instances
      • AWS provider
        • Install AWS provider
        • Create AWS telemetry instances
    • Integrating Configuration Management
    • Integrating with pipelines
    • Integrating Load Testing
      • Integrating NeoLoad
      • Integrating LoadRunner Professional
      • Integrating LoadRunner Enterprise
  • Reference
    • Glossary
      • System
      • Component
      • Metric
      • Parameter
      • Component Type
      • Workflow
      • Telemetry Provider
      • Telemetry Instance
      • Optimization Pack
      • Goals & Constraints
      • KPI
      • Optimization Study
      • Workspace
      • Safety Policies
    • Construct templates
      • System template
      • Component template
      • Parameter template
      • Metric template
      • Component Types template
      • Telemetry Provider template
      • Telemetry Instance template
      • Workflows template
      • Study template
        • Goal & Constraints
        • Windowing policy
          • Trim windowing
          • Stability windowing
        • Parameter selection
        • Metric selection
        • Workload selection
        • KPIs
        • Steps
          • Baseline step
          • Bootstrap step
          • Preset step
          • Optimize step
        • Parameter rendering
        • Optimizer Options
    • Workflow Operators
      • General operator arguments
      • Executor Operator
      • FileConfigurator Operator
      • LinuxConfigurator Operator
      • WindowsExecutor Operator
      • WindowsFileConfigurator Operator
      • Sleep Operator
      • OracleExecutor Operator
      • OracleConfigurator Operator
      • SparkSSHSubmit Operator
      • SparkSubmit Operator
      • SparkLivy Operator
      • NeoLoadWeb Operator
      • LoadRunner Operator
      • LoadRunnerEnteprise Operator
    • Telemetry metric mapping
      • Dynatrace metrics mapping
      • Prometheus metrics mapping
      • NeoLoadWeb metrics mapping
      • Spark History Server metrics mapping
      • LoadRunner metrics mapping
    • Optimization Packs
      • Linux optimization pack
        • Amazon Linux
        • Amazon Linux 2
        • Amazon Linux 2022
        • CentOS 7
        • CentOS 8
        • RHEL 7
        • RHEL 8
        • Ubuntu 16.04
        • Ubuntu 18.04
        • Ubuntu 20.04
      • DotNet optimization pack
        • DotNet Core 3.1
      • Java OpenJDK optimization pack
        • Java OpenJDK 8
        • Java OpenJDK 11
        • Java OpenJDK 17
      • OpenJ9 optimization pack
        • IBM J9 VM 6
        • IBM J9 VM 8
        • Eclipse Open J9 11
      • Node JS optimization pack
        • Node JS 18
      • GO optimization pack
        • GO 1
      • Web Application optimization pack
        • Web Application
      • Docker optimization pack
        • Container
      • Kubernetes optimization pack
        • Kubernetes Pod
        • Kubernetes Container
        • Kubernetes Workload
        • Kubernetes Namespace
        • Kubernetes Cluster
      • WebSphere optimization pack
        • WebSphere 8.5
        • WebSphere Liberty ND
      • AWS optimization pack
        • EC2
        • Lambda
      • PostgreSQL optimization pack
        • PostgreSQL 11
        • PostgreSQL 12
      • Cassandra optimization pack
        • Cassandra
      • MySQL Database optimization pack
        • MySQL 8.0
      • Oracle Database optimization pack
        • Oracle Database 12c
        • Oracle Database 18c
        • Oracle Database 19c
        • RDS Oracle Database 11g
        • RDS Oracle Database 12c
      • MongoDB optimization pack
        • MongoDB 4
        • MongoDB 5
      • Elasticsearch optimization pack
        • Elasticsearch 6
      • Spark optimization pack
        • Spark Application 2.2.0
        • Spark Application 2.3.0
        • Spark Application 2.4.0
    • Command Line commands
      • Administration commands
      • User and Workspace management commands
      • Authentication commands
      • Resource management commands
      • Optimizer options commands
    • Release Notes
  • Knowledge Base
    • Creating custom optimization packs
    • Setting up a Konakart environment for testing Akamas
    • Modeling a sample Java-based e-commerce application (Konakart)
    • Optimizing a web application
    • Optimizing a sample Java OpenJ9 application
    • Optimizing a sample Linux system
    • Optimizing a MongoDB server instance
    • Optimizing a Kubernetes application
    • Leveraging Ansible to automate AWS instance management
    • Guidelines for optimizing AWS EC2 instances
    • Optimizing an Oracle Database server instance
    • Optimizing an Oracle Database for an e-commerce service
    • Guidelines for optimizing Oracle RDS
    • Optimizing a MySQL server database running Sysbench
    • Optimizing a MySQL server database running OLTPBench
    • Optimizing a live full-stack deployment (K8s + JVM)
    • Setup Instana integration
Powered by GitBook
On this page
  • Metrics
  • CPU and Networking
  • Disks
  • CPU Credits
  • Disk Credits
  • Pricing
  • Parameters
  • Constraints
  • Instance size

Was this helpful?

Export as PDF
  1. Reference
  2. Optimization Packs
  3. AWS optimization pack

EC2

This page describes the Optimization Pack for AWS EC2.

Metrics

CPU and Networking

Name
Unit
Description

cpu_util

percent

The average CPU utilization % across all the CPUs (i.e., how much time on average the CPUs are busy doing work)

network_in_bytes_details

bytes/s

The number of inbound network packets in bytes per second broken down by network device (e.g., wlp4s0)

network_out_bytes_details

bytes/s

The number of outbound network packets in bytes per second broken down by network device (e.g., eth01)

Disks

Name
Unit
Description

disk_read_bytes

bytes/s

The number of bytes per second read across all disks

disk_write_bytes

bytes/s

The number of bytes per second written across all disks

aws_ec2_disk_iops_reads

ops/s

The per second average number of EBS IO disk-read operations summed across all disks

aws_ec2_disk_iops_writes

ops/s

The per second average number of EBS IO disk-write operations summed across all disks

aws_ec2_disk_iops

ops/s

The per second average number of EBS IO disk operations summed across all disks

CPU Credits

Name
Unit
Description

aws_ec2_credits_cpu_available

credits

The number of earned CPU credits that an instance has accrued since it was launched or started. Credits are accrued in the credit balance after they are earned, and removed from the credit balance when they are spent

aws_ec2_credits_cpu_used

credits

The number of CPU credits spent by the instance for CPU utilization

Disk Credits

Name
Unit
Description

aws_ec2_ebs_credits_io_util

percent

The percentage of I/O credits remaining in the burst bucket

aws_ec2_ebs_credits_bytes_util

percent

The percentage of throughput credits remaining in the burst bucket

Pricing

Name
Unit
Description

aws_ec2_price

dollars

AWS EC2 hourly instance price (on-demand)

Parameters

Notice: for the following parameters to take effect, the instance needs to be stopped and changes need to be applied before restarting the instance.

Name
Unit
Type
Default Value
Domain
Restart
Description

aws_ec2_instance_type

Categorical

m5

c5,c5d,c5a,c6g,c6gd,c6gd, r5,r5d,r5a,r5ad,r6g,r6gd, m5,m5d,m5a,m5ad,m6g,m6gd, t3,t3a, a1,z1d

yes

Instance types comprise varying combinations of CPU, memory, storage, and networking capacity, optimized to fit different use cases

aws_ec2_instance_size

Ordinal

large

nano, micro,small,medium,large, xlarge,2xlarge,4xlarge,8xlarge, 9xlarge,12xlarge,16xlarge, 18xlarge,24xlarge

yes

Constraints

The following table shows a sample of constraints that are required in the definition of the study, depending on the tuned parameters.

Notice that AWS does not support all combinations of instance types and sizes, so it is better to specify them beforehand in your constraints to avoid unnecessary experiment failures.

Instance size

To limit the combination of the instance type and sizes to those only supported by AWS or to those of interest for a particular study you can use a constraint such as the following: \

parameterConstraints:
  - name: Instance Types
    formula: (host.aws_ec2_instance_type == "c5" && (host.aws_ec2_instance_size == "large" || host.aws_ec2_instance_size == "xlarge" || host.aws_ec2_instance_size == "2xlarge")) || (host.aws_ec2_instance_type == "c5a" && (host.aws_ec2_instance_size == "large" || host.aws_ec2_instance_size == "xlarge" || host.aws_ec2_instance_size == "2xlarge")) || (host.aws_ec2_instance_type == "m5" && (host.aws_ec2_instance_size == "large" || host.aws_ec2_instance_size == "xlarge" || host.aws_ec2_instance_size == "2xlarge")) || (host.aws_ec2_instance_type == "m5a" && (host.aws_ec2_instance_size == "large" || host.aws_ec2_instance_size == "xlarge" || host.aws_ec2_instance_size == "2xlarge"))

This constraint is built by connecting multiple constraints such as the following one with the OR operator ||

host.aws_ec2_instance_type == "c5" && (host.aws_ec2_instance_size == "large" || host.aws_ec2_instance_size == "xlarge" || host.aws_ec2_instance_size == "2xlarge")

These constraint instruct akamas to only use large, xlarge and 2xlarge size for instances of type c5.

Last updated 10 months ago

Was this helpful?