Akamas Docs
3.5
3.5
  • Home
  • Getting started
    • Introduction
    • Free Trial
    • Licensing
    • Deployment
      • Cloud Hosting
    • Security
    • Maintenance & Support (M&S) Services
      • Customer Support Services
      • Support levels for Customer Support Services
      • Support levels for software versions
      • Support levels with Akamas
  • Installing
    • Architecture
    • Docker compose installation
      • Prerequisites
        • Hardware Requirements
        • Software Requirements
        • Network requirements
      • Install Akamas dependencies
      • Install the Akamas Server
        • Online installation mode
          • Online installation behind a Proxy server
        • Offline installation mode
        • Changing UI Ports
        • Setup HTTPS configuration
      • Troubleshoot Docker installation issues
    • Kubernetes installation
      • Prerequisites
        • Cluster Requirements
        • Software Requirements
      • Install Akamas
        • Online Installation
        • Offline Installation - Private registry
      • Installing on OpenShift
      • Accessing Akamas
      • Useful commands
    • Install the CLI
      • Setup the CLI
      • Initialize the CLI
      • Change CLI configuration
      • Use a proxy server
    • Verify the installation
    • Installing the toolbox
    • Install the license
    • Manage anonymous data collection
  • Managing Akamas
    • Akamas logs
    • Audit logs
    • Upgrade Akamas
      • Docker compose
      • Kubernetes
    • Monitor Akamas status
    • Backup & Recover of the Akamas Server
    • Users management
      • Accessing Keycloak admin console
      • Configure an external identity provider
        • Azure Active Directory
        • Google
      • Limit users sessions
        • Local users
        • Identity provider users
    • Collecting support information
  • Using
    • System
    • Telemetry
    • Workflow
    • Study
      • Offline Study
      • Live Study
        • Analyzing results of live optimization studies
      • Windowing
      • Parameters and constraints
  • Optimization Guides
    • Optimize application costs and resource efficiency
      • Kubernetes microservices
        • Optimize cost of a Kubernetes deployment subject to Horizontal Pod Autoscaler
        • Optimize cost of a Kubernetes microservice while preserving SLOs in production
        • Optimize cost of a Java microservice on Kubernetes while preserving SLOs in production
      • Application runtime
        • Optimizing a sample Java OpenJDK application
        • Optimizing cost of a Node.js application with performance tests
        • Optimizing cost of a Golang application with performance tests
        • Optimizing cost of a .NET application with performance tests
      • Applications running on cloud instances
        • Optimizing a sample application running on AWS
      • Spark applications
        • Optimizing a Spark application
    • Optimize application performance and reliability
      • Kubernetes microservices
        • Optimizing cost of a Kubernetes microservice while preserving SLOs in production
        • Optimizing cost of a Java microservice on Kubernetes while preserving SLOs in production
      • Applications running on cloud instances
      • Spark applications
  • Integrating
    • Integrating Telemetry Providers
      • CSV provider
        • Install CSV provider
        • Create CSV telemetry instances
      • Dynatrace provider
        • Install Dynatrace provider
        • Create Dynatrace telemetry instances
          • Import Key Requests
      • Prometheus provider
        • Install Prometheus provider
        • Create Prometheus telemetry instances
        • CloudWatch Exporter
        • OracleDB Exporter
      • Spark History Server provider
        • Install Spark History Server provider
        • Create Spark History Server telemetry instances
      • NeoLoadWeb provider
        • Install NeoLoadWeb telemetry provider
        • Create NeoLoadWeb telemetry instances
      • LoadRunner Professional provider
        • Install LoadRunner Professional provider
        • Create LoadRunner Professional telemetry instances
      • LoadRunner Enterprise provider
        • Install LoadRunner Enterprise provider
        • Create LoadRunner Enterprise telemetry instances
      • AWS provider
        • Install AWS provider
        • Create AWS telemetry instances
    • Integrating Configuration Management
    • Integrating with pipelines
    • Integrating Load Testing
      • Integrating NeoLoad
      • Integrating LoadRunner Professional
      • Integrating LoadRunner Enterprise
  • Reference
    • Glossary
      • System
      • Component
      • Metric
      • Parameter
      • Component Type
      • Workflow
      • Telemetry Provider
      • Telemetry Instance
      • Optimization Pack
      • Goals & Constraints
      • KPI
      • Optimization Study
      • Workspace
      • Safety Policies
    • Construct templates
      • System template
      • Component template
      • Parameter template
      • Metric template
      • Component Types template
      • Telemetry Provider template
      • Telemetry Instance template
      • Workflows template
      • Study template
        • Goal & Constraints
        • Windowing policy
          • Trim windowing
          • Stability windowing
        • Parameter selection
        • Metric selection
        • Workload selection
        • KPIs
        • Steps
          • Baseline step
          • Bootstrap step
          • Preset step
          • Optimize step
        • Parameter rendering
        • Optimizer Options
    • Workflow Operators
      • General operator arguments
      • Executor Operator
      • FileConfigurator Operator
      • LinuxConfigurator Operator
      • WindowsExecutor Operator
      • WindowsFileConfigurator Operator
      • Sleep Operator
      • OracleExecutor Operator
      • OracleConfigurator Operator
      • SparkSSHSubmit Operator
      • SparkSubmit Operator
      • SparkLivy Operator
      • NeoLoadWeb Operator
      • LoadRunner Operator
      • LoadRunnerEnteprise Operator
    • Telemetry metric mapping
      • Dynatrace metrics mapping
      • Prometheus metrics mapping
      • NeoLoadWeb metrics mapping
      • Spark History Server metrics mapping
      • LoadRunner metrics mapping
    • Optimization Packs
      • Linux optimization pack
        • Amazon Linux
        • Amazon Linux 2
        • Amazon Linux 2022
        • CentOS 7
        • CentOS 8
        • RHEL 7
        • RHEL 8
        • Ubuntu 16.04
        • Ubuntu 18.04
        • Ubuntu 20.04
      • DotNet optimization pack
        • DotNet Core 3.1
      • Java OpenJDK optimization pack
        • Java OpenJDK 8
        • Java OpenJDK 11
        • Java OpenJDK 17
      • OpenJ9 optimization pack
        • IBM J9 VM 6
        • IBM J9 VM 8
        • Eclipse Open J9 11
      • Node JS optimization pack
        • Node JS 18
      • GO optimization pack
        • GO 1
      • Web Application optimization pack
        • Web Application
      • Docker optimization pack
        • Container
      • Kubernetes optimization pack
        • Kubernetes Pod
        • Kubernetes Container
        • Kubernetes Workload
        • Kubernetes Namespace
        • Kubernetes Cluster
      • WebSphere optimization pack
        • WebSphere 8.5
        • WebSphere Liberty ND
      • AWS optimization pack
        • EC2
        • Lambda
      • PostgreSQL optimization pack
        • PostgreSQL 11
        • PostgreSQL 12
      • Cassandra optimization pack
        • Cassandra
      • MySQL Database optimization pack
        • MySQL 8.0
      • Oracle Database optimization pack
        • Oracle Database 12c
        • Oracle Database 18c
        • Oracle Database 19c
        • RDS Oracle Database 11g
        • RDS Oracle Database 12c
      • MongoDB optimization pack
        • MongoDB 4
        • MongoDB 5
      • Elasticsearch optimization pack
        • Elasticsearch 6
      • Spark optimization pack
        • Spark Application 2.2.0
        • Spark Application 2.3.0
        • Spark Application 2.4.0
    • Command Line commands
      • Administration commands
      • User and Workspace management commands
      • Authentication commands
      • Resource management commands
      • Optimizer options commands
    • Release Notes
  • Knowledge Base
    • Creating custom optimization packs
    • Setting up a Konakart environment for testing Akamas
    • Modeling a sample Java-based e-commerce application (Konakart)
    • Optimizing a web application
    • Optimizing a sample Java OpenJ9 application
    • Optimizing a sample Linux system
    • Optimizing a MongoDB server instance
    • Optimizing a Kubernetes application
    • Leveraging Ansible to automate AWS instance management
    • Guidelines for optimizing AWS EC2 instances
    • Optimizing an Oracle Database server instance
    • Optimizing an Oracle Database for an e-commerce service
    • Guidelines for optimizing Oracle RDS
    • Optimizing a MySQL server database running Sysbench
    • Optimizing a MySQL server database running OLTPBench
    • Optimizing a live full-stack deployment (K8s + JVM)
    • Setup Instana integration
Powered by GitBook
On this page
  • Components
  • Creating the Online Boutique system
  • Creating the system with the CLI

Was this helpful?

Export as PDF
  1. Using

System

Last updated 10 months ago

Was this helpful?

Creating a system is the first step in optimizing your application.

A system is a representation of your application. It might be a complete representation of different layers, a single microservice, a batch job, or any IT system that you want to optimize.

A system can be used to fully model an application and then run multiple optimization initiatives or contain just the elements that are used for a specific optimization study.

The system is identified by a name, which in our example is "Online Boutique", and can be extended with a description to make it easily recognizable.

Components

The core elements of a system are the components. A component represents the fundamental element of an IT system, often composed of various layers or entities. It serves as a black-box definition of an entity involved in optimization, eliminating the need for intricate details in modeling.

A component comprises the following properties:

  • Name: A distinct identifier within the context of the system.

  • Description: A clarification of the component's purpose or function.

  • Component type: An identification of the underlying technology or technology stack of the component.

  • Properties: A set of additional properties that hold information about the component's configuration or telemetry (e.g. the IP used to reach an API or the username to connect to a server via SSH).

Akamas allows users to model their IT systems without the need to focus on technological aspects by providing several out-of-the-box component types to support system and component modeling.

Component types are platform entities (i.e.: shared among all the users) that contain key information about specific technologies such as parameters that can be tuned and key metrics.

Akamas includes off-the-shelf component types for the most popular technologies such as Containers, Linux Hosts, AWS EC2 instances, Web Applications, Spark, and runtimes such as JVM, Node, and Go.

Creating the Online Boutique system

Recalling our example of the Online Boutique application, we decided, for the moment, to model just the elements that are included in the optimization initiative. We have also decided not to model the entire Kubernetes cluster as we are not interested in optimizing and monitoring it at this stage.

We have mapped the JVM and the Pod to the respective component types and mapped the Kubernetes service to the Web Application component type. You can read more about these component types in their documentation reference.

To model our system we used the component types coming from these optimization packs:

The following picture shows our choice of components starting from the architectural diagram.

Creating the system with the CLI

To create this system in Akamas you can use the following YAML file.

name: Online Boutique
description: The Online Boutique e-commerce application

Create the file system.yaml and run the following command.

akamas create system system.yaml

Now you can start adding components. The following three YAML files represent the three components of our Online Boutique system.

APIs component specification
name: Apis
description: The APIs exposed to users
componentType: Web Application
properties:
  dynatrace:
    tags:
      Application: Ad-Service
Ad Service component specification
name: Adservice
description: The adservice of the online boutique by Google
componentType: Kubernetes Container
properties:
  dynatrace:
    type: CONTAINER_GROUP_INSTANCE
    kubernetes:
      namespace: akamas-demo
      containerName: server
      basePodName: ak-adservice-*
JVM component specification
name: AdserviceJVM
description: The JVM of the adservice 
componentType: java-openjdk-11
properties:
  dynatrace:
    tags:
      JVM: Ad-Service

Create the files and run the following command for each file.

akamas create component <file-name> "Online Boutique"

Note that, since components are bound to a specific system, we need to provide as an argument to the creation command also the name of the system Online Boutique that we created a few moments ago.

Component types are shipped within and can be easily installed and updated as support for new technologies is released.

Optimization Packs
Open JDK
Web Application
Kubernetes
From and architectural diagram to the Akamas system