Akamas Docs
3.1.2
3.1.2
  • How to use this documentation
  • Getting started with Akamas
    • Introduction to Akamas
    • Licensing
    • Deployment
      • Cloud Hosting
    • Security
    • Maintenance & Support (M&S) Services
      • Customer Support Services
      • Support levels for Customer Support Services
      • Support levels for software versions
      • Support levels with Akamas 3.1
  • Installing Akamas
    • Akamas Architecture
    • Prerequisites
      • Hardware Requirements
      • Software Requirements
      • Network requirements
    • Install Akamas dependencies
    • Install the Akamas Server
      • Online installation mode
        • Online installation behind a Proxy server
      • Offline installation mode
      • Changing UI Ports
      • Setup HTTPS configuration
    • Install the Akamas CLI
      • Setup the Akamas CLI
      • Verify the Akamas CLI
      • Initialize Akamas CLI
      • Change CLI configuration
    • Verify the Akamas Server
    • Install the Akamas license
    • Manage anonymous data collection
    • Install an Akamas Workstation
    • Troubleshoot install issues
    • Manage the Akamas Server
      • Akamas logs
      • Audit logs
      • Install upgrades and patches
      • Monitor the Akamas Server
      • Backup & Recover of the Akamas Server
  • Using Akamas
    • General optimization process and methodology
    • Preparing optimization studies
      • Modeling systems
      • Modeling components
        • Creating custom optimization packs
        • Managing optimization packs
      • Creating telemetry instances
      • Creating automation workflows
        • Creating workflows for offline studies
        • Performing load testing to support optimization activities
        • Creating workflows for live optimizations
      • Creating optimization studies
        • Defining optimization goal & constraints
        • Defining windowing policies
        • Defining KPIs
        • Defining parameters & metrics
        • Defining workloads
        • Defining optimization steps
        • Setting safety policies
    • Running optimization studies
      • Before running optimization studies
      • Analyzing results of offline optimization studies
        • Optimization Insights
      • Analyzing results of live optimization studies
      • Before applying optimization results
    • Guidelines for choosing optimization parameters
      • Guidelines for JVM (OpenJ9)
      • Guidelines for JVM layer (OpenJDK)
      • Guidelines for Oracle Database
      • Guidelines for PostgreSQL
    • Guidelines for defining optimization studies
      • Optimizing Linux
      • Optimizing Java OpenJDK
      • Optimizing OpenJ9
      • Optimizing Web Applications
      • Optimizing Kubernetes
      • Optimizing Spark
      • Optimizing Oracle Database
      • Optimizing MongoDB
      • Optimizing MySQL Database
      • Optimizing PostgreSQL
  • Integrating Akamas
    • Integrating Telemetry Providers
      • CSV provider
        • Install CSV provider
        • Create CSV provider instances
      • Dynatrace provider
        • Install Dynatrace provider
        • Create Dynatrace provider instances
      • Prometheus provider
        • Install Prometheus provider
        • Create Prometheus provider instances
        • CloudWatch Exporter
        • OracleDB Exporter
      • Spark History Server provider
        • Install Spark History Server provider
        • Create Spark History Server provider instances
      • NeoLoadWeb provider
        • Setup NeoLoadWeb telemetry provider
        • Create NeoLoadWeb provider instances
      • LoadRunner Professional provider
        • Install LoadRunner Professional provider
        • Create LoadRunner Professional provider instances
      • LoadRunner Enterprise provider
        • Install LoadRunner Enterprise provider
        • Create LoadRunner Enterprise provider instances
      • AWS provider
        • Install AWS provider
        • Create AWS provider instances
    • Integrating Configuration Management
    • Integrating Value Stream Delivery
    • Integrating Load Testing
      • Integrating NeoLoad
      • Integrating Load Runner Professional
      • Integrating LoadRunner Enterprise
  • Akamas Reference
    • Glossary
      • System
      • Component
      • Metric
      • Parameter
      • Component Type
      • Workflow
      • Telemetry Provider
      • Telemetry Instance
      • Optimization Pack
      • Goals & Constraints
      • KPI
      • Optimization Study
      • Offline Optimization Study
      • Live Optimization Study
      • Workspace
    • Construct templates
      • System template
      • Component template
      • Parameter template
      • Metric template
      • Component Types template
      • Telemetry Provider template
      • Telemetry Instance template
      • Workflows template
      • Study template
        • Goal & Constraints
        • Windowing policy
          • Trim windowing
          • Stability windowing
        • Parameter selection
        • Metric selection
        • Workload selection
        • KPIs
        • Steps
          • Baseline step
          • Bootstrap step
          • Preset step
          • Optimize step
        • Parameter rendering
    • Workflow Operators
      • General operator arguments
      • Executor Operator
      • FileConfigurator Operator
      • LinuxConfigurator Operator
      • WindowsExecutor Operator
      • WindowsFileConfigurator Operator
      • Sleep Operator
      • OracleExecutor Operator
      • OracleConfigurator Operator
      • SparkSSHSubmit Operator
      • SparkSubmit Operator
      • SparkLivy Operator
      • NeoLoadWeb Operator
      • LoadRunner Operator
      • LoadRunnerEnteprise Operator
    • Telemetry metric mapping
      • Dynatrace metrics mapping
      • Prometheus metrics mapping
      • NeoLoadWeb metrics mapping
      • Spark History Server metrics mapping
      • LoadRunner metrics mapping
    • Optimization Packs
      • Linux optimization pack
        • Amazon Linux
        • Amazon Linux 2
        • Amazon Linux 2022
        • CentOS 7
        • CentOS 8
        • RHEL 7
        • RHEL 8
        • Ubuntu 16.04
        • Ubuntu 18.04
        • Ubuntu 20.04
      • DotNet optimization pack
        • DotNet Core 3.1
      • Java-OpenJDK optimization pack
        • Java OpenJDK 8
        • Java OpenJDK 11
      • OpenJ9 optimization pack
        • IBM J9 VM 6
        • IBM J9 VM 8
        • Eclipse Open J9 11
      • NodeJS optimization pack
        • NodeJS
      • GO optimization pack
        • GO 1
      • Web Application optimization pack
        • Web Application
      • Docker optimization pack
        • Container
      • Kubernetes optimization pack
        • Kubernetes Pod
        • Kubernetes Container
        • Kubernetes Workload
        • Kubernetes Namespace
        • Kubernetes Cluster
      • WebSphere optimization pack
        • WebSphere 8.5
        • WebSphere Liberty ND
      • AWS optimization pack
        • EC2
        • Lambda
      • PostgreSQL optimization pack
        • PostgreSQL 11
        • PostgreSQL 12
      • Cassandra optimization pack
        • Cassandra
      • MySQL Database optimization pack
        • MySQL 8.0
      • Oracle Database optimization pack
        • Oracle Database 12c
        • Oracle Database 18c
        • Oracle Database 19c
        • RDS Oracle Database 11g
        • RDS Oracle Database 12c
      • MongoDB optimization pack
        • MongoDB 4
        • MongoDB 5
      • Elasticsearch optimization pack
        • Elasticsearch 6
      • Spark optimization pack
        • Spark Application 2.2.0
        • Spark Application 2.3.0
        • Spark Application 2.4.0
    • Command Line commands
      • Administration commands
      • User and Workspace management commands
      • Authentication commands
      • Resource management commands
      • Optimizer options commands
  • Knowledge Base
    • Setting up a Konakart environment for testing Akamas
    • Modeling a sample Java-based e-commerce application (Konakart)
    • Optimizing a web application
    • Optimizing a sample Java OpenJ9 application
    • Optimizing a sample Java OpenJDK application
    • Optimizing a sample Linux system
    • Optimizing a MongoDB server instance
    • Optimizing a Kubernetes application
    • Leveraging Ansible to automate AWS instance management
    • Guidelines for optimizing AWS EC2 instances
    • Optimizing a sample application running on AWS
    • Optimizing a Spark application
    • Optimizing an Oracle Database server instance
    • Optimizing an Oracle Database for an e-commerce service
    • Guidelines for optimizing Oracle RDS
    • Optimizing a MySQL server database running Sysbench
    • Optimizing a MySQL server database running OLTPBench
    • Optimizing a live K8s deployment
    • Optimizing a live full-stack deployment (K8s + JVM)
  • Akamas Free Trial
Powered by GitBook
On this page
  • Environment setup
  • Telemetry Infrastructure setup
  • Optimization setup
  • System
  • System pagerank
  • Component jvm
  • Workflow
  • Telemetry
  • Study

Was this helpful?

Export as PDF
  1. Knowledge Base

Optimizing a sample Java OpenJDK application

Last updated 1 year ago

Was this helpful?

In this example study we’ll tune the parameters of PageRank, one of the benchmarks available in the , with the goal of minimizing its memory usage. Application monitoring is provided by Prometheus, leveraging a JMX exporter.

Environment setup

The test environment includes the following instances:

  • Akamas: instance running Akamas

  • PageRank: instance running the PageRank benchmark and the Prometheus monitoring service

Telemetry Infrastructure setup

To gather metrics about PageRank we will use a Prometheus and a JMX exporter. Here’s the scraper to add to the Prometheus configuration to extract the metrics from the exporter:

- job_name: jmx-exporter
  static_configs:
    - targets: ['pagerank.akamas.io:5556']
      labels:
      instance: jvm

Application and Test tool

To run and monitor the benchmark we’ll require on the PageRank instance:

  • The

  • The , plus a configuration file to expose the required classes

Here’s the snippet of code to configure the instance as required for this guide:

mkdir renaissance; cd renaissance
wget -O renaissance.jar https://github.com/renaissance-benchmarks/renaissance/releases/download/v0.10.0/renaissance-gpl-0.10.0.jar
wget -O jmx_exporter.jar https://repo1.maven.org/maven2/io/prometheus/jmx/jmx_prometheus_javaagent/0.14.0/jmx_prometheus_javaagent-0.14.0.jar
echo -e '--\nwhitelistObjectNames: ["java.lang:*"]' > conf.yaml

Optimization setup

In this section, we will guide you through the steps required to set up the optimization on Akamas.

System

System pagerank

Here’s the definition of the system we will use to group our components and telemetry instances for this example:

name: pagerank
description: A system to tune the pagerank benchmark

To create the system run the following command:

akamas create system pagerank.yaml

Component jvm

Here’s the definition of the component:

name: jvm
componentType: openjdk-11
properties:
  prometheus:
    instance: jvm
    job: jmx-exporter

To create the component in the system run the following command:

akamas create component jvm.yaml pagerank

Workflow

The workflow used for this study consists of two main stages:

  • generate the configuration file containing the tested Java parameters

  • run the execution using previously written parameters

Here’s the definition of the workflow:

name: run-pagerank
tasks:
  - name: Configure parameters
    operator: FileConfigurator
    arguments:
      source:
        hostname: pagerank.akamas.io
        username: ubuntu
        path: /home/ubuntu/renaissance/java_opts.template
        key: key
      target:
        hostname: pagerank.akamas.io
        username: ubuntu
        path: /home/ubuntu/renaissance/java_opts
        key: key

  - name: Run benchmark
    operator: Executor
    arguments:
      command: "cd renaissance; java -javaagent:./jmx_exporter.jar=5556:conf.yaml $(cat java_opts) -jar renaissance.jar -r 2 page-rank"
      host:
        hostname: pagerank.akamas.io
        username: ubuntu
        key: key

Where the configuration template is java_opts.template is defined as follows:

 ${jvm.jvm_gcType} ${jvm.jvm_maxHeapSize} ${jvm.jvm_newSize} ${jvm.jvm_survivorRatio} ${jvm.jvm_maxTenuringThreshold}

To create the workflow run the following command:

akamas create workflow workflow.yaml

Telemetry

The following is the definition of the telemetry instance that fetches metrics from the Prometheus service:

provider: Prometheus
config:
  address: pagerank.akamas.io
  port: 9090

To create the telemetry instance in the system run the following command:

akamas create telemetry-instance prometheus.yaml pagerank

This telemetry instance will be able to bind the fetched metrics to the related jvm component thanks to the prometheus attribute we previously added in its definition.

Study

The goal of this study is to find a JVM configuration that minimizes the peak memory used by the benchmark.

The optimized parameters are the maximum heap size, the garbage collector used and several other parameters managing the new and old heap areas. We also specify a constraint stating that the GC regions can’t exceed the total heap available, to avoid experimenting with parameter configurations that can’t start in the first place.

Here’s the definition of the study:

name: Optimize PageRank
description: Tweaking the JVM parameters to optimize the page-rank benchmark.
system: pagerank
workflow: run-pagerank

goal:
  objective: minimize
  function:
    formula: max_memory
    variables:
      max_memory:
        metric: jvm.jvm_memory_used
        aggregation: max

parametersSelection:
  - name: jvm.jvm_gcType
  - name: jvm.jvm_maxHeapSize
    domain: [1250, 2000]
  - name: jvm.jvm_newSize
    domain: [350, 2000]
  - name: jvm.jvm_survivorRatio
  - name: jvm.jvm_maxTenuringThreshold

parameterConstraints:
  - name: Max heap must always be greater than new size
    formula: jvm.jvm_maxHeapSize > jvm.jvm_newSize

steps:
  - name: baseline
    type: baseline
    values:
      jvm.jvm_gcType: G1
      jvm.jvm_maxHeapSize: 2000

  - name: optimize
    type: optimize
    numberOfExperiments: 30

To create and run the study execute the following commands:

akamas create study study.yaml
akamas start study 'Optimize PageRank'

If you have not installed the optimization pack yet, take a look at the optimization pack page Java OpenJDK to proceed with the installation.

We’ll use a component of type to represent the JVM underlying the PageRank benchmark. To identify the JMX-related metrics in Prometheus the configuration requires the prometheus property for the telemetry service, detailed later in this guide.

Renaissance suite
Renaissance jar
JMX exporter agent
Java OpenJDK
Java OpenJDK 11