Akamas Docs
3.1.2
3.1.2
  • How to use this documentation
  • Getting started with Akamas
    • Introduction to Akamas
    • Licensing
    • Deployment
      • Cloud Hosting
    • Security
    • Maintenance & Support (M&S) Services
      • Customer Support Services
      • Support levels for Customer Support Services
      • Support levels for software versions
      • Support levels with Akamas 3.1
  • Installing Akamas
    • Akamas Architecture
    • Prerequisites
      • Hardware Requirements
      • Software Requirements
      • Network requirements
    • Install Akamas dependencies
    • Install the Akamas Server
      • Online installation mode
        • Online installation behind a Proxy server
      • Offline installation mode
      • Changing UI Ports
      • Setup HTTPS configuration
    • Install the Akamas CLI
      • Setup the Akamas CLI
      • Verify the Akamas CLI
      • Initialize Akamas CLI
      • Change CLI configuration
    • Verify the Akamas Server
    • Install the Akamas license
    • Manage anonymous data collection
    • Install an Akamas Workstation
    • Troubleshoot install issues
    • Manage the Akamas Server
      • Akamas logs
      • Audit logs
      • Install upgrades and patches
      • Monitor the Akamas Server
      • Backup & Recover of the Akamas Server
  • Using Akamas
    • General optimization process and methodology
    • Preparing optimization studies
      • Modeling systems
      • Modeling components
        • Creating custom optimization packs
        • Managing optimization packs
      • Creating telemetry instances
      • Creating automation workflows
        • Creating workflows for offline studies
        • Performing load testing to support optimization activities
        • Creating workflows for live optimizations
      • Creating optimization studies
        • Defining optimization goal & constraints
        • Defining windowing policies
        • Defining KPIs
        • Defining parameters & metrics
        • Defining workloads
        • Defining optimization steps
        • Setting safety policies
    • Running optimization studies
      • Before running optimization studies
      • Analyzing results of offline optimization studies
        • Optimization Insights
      • Analyzing results of live optimization studies
      • Before applying optimization results
    • Guidelines for choosing optimization parameters
      • Guidelines for JVM (OpenJ9)
      • Guidelines for JVM layer (OpenJDK)
      • Guidelines for Oracle Database
      • Guidelines for PostgreSQL
    • Guidelines for defining optimization studies
      • Optimizing Linux
      • Optimizing Java OpenJDK
      • Optimizing OpenJ9
      • Optimizing Web Applications
      • Optimizing Kubernetes
      • Optimizing Spark
      • Optimizing Oracle Database
      • Optimizing MongoDB
      • Optimizing MySQL Database
      • Optimizing PostgreSQL
  • Integrating Akamas
    • Integrating Telemetry Providers
      • CSV provider
        • Install CSV provider
        • Create CSV provider instances
      • Dynatrace provider
        • Install Dynatrace provider
        • Create Dynatrace provider instances
      • Prometheus provider
        • Install Prometheus provider
        • Create Prometheus provider instances
        • CloudWatch Exporter
        • OracleDB Exporter
      • Spark History Server provider
        • Install Spark History Server provider
        • Create Spark History Server provider instances
      • NeoLoadWeb provider
        • Setup NeoLoadWeb telemetry provider
        • Create NeoLoadWeb provider instances
      • LoadRunner Professional provider
        • Install LoadRunner Professional provider
        • Create LoadRunner Professional provider instances
      • LoadRunner Enterprise provider
        • Install LoadRunner Enterprise provider
        • Create LoadRunner Enterprise provider instances
      • AWS provider
        • Install AWS provider
        • Create AWS provider instances
    • Integrating Configuration Management
    • Integrating Value Stream Delivery
    • Integrating Load Testing
      • Integrating NeoLoad
      • Integrating Load Runner Professional
      • Integrating LoadRunner Enterprise
  • Akamas Reference
    • Glossary
      • System
      • Component
      • Metric
      • Parameter
      • Component Type
      • Workflow
      • Telemetry Provider
      • Telemetry Instance
      • Optimization Pack
      • Goals & Constraints
      • KPI
      • Optimization Study
      • Offline Optimization Study
      • Live Optimization Study
      • Workspace
    • Construct templates
      • System template
      • Component template
      • Parameter template
      • Metric template
      • Component Types template
      • Telemetry Provider template
      • Telemetry Instance template
      • Workflows template
      • Study template
        • Goal & Constraints
        • Windowing policy
          • Trim windowing
          • Stability windowing
        • Parameter selection
        • Metric selection
        • Workload selection
        • KPIs
        • Steps
          • Baseline step
          • Bootstrap step
          • Preset step
          • Optimize step
        • Parameter rendering
    • Workflow Operators
      • General operator arguments
      • Executor Operator
      • FileConfigurator Operator
      • LinuxConfigurator Operator
      • WindowsExecutor Operator
      • WindowsFileConfigurator Operator
      • Sleep Operator
      • OracleExecutor Operator
      • OracleConfigurator Operator
      • SparkSSHSubmit Operator
      • SparkSubmit Operator
      • SparkLivy Operator
      • NeoLoadWeb Operator
      • LoadRunner Operator
      • LoadRunnerEnteprise Operator
    • Telemetry metric mapping
      • Dynatrace metrics mapping
      • Prometheus metrics mapping
      • NeoLoadWeb metrics mapping
      • Spark History Server metrics mapping
      • LoadRunner metrics mapping
    • Optimization Packs
      • Linux optimization pack
        • Amazon Linux
        • Amazon Linux 2
        • Amazon Linux 2022
        • CentOS 7
        • CentOS 8
        • RHEL 7
        • RHEL 8
        • Ubuntu 16.04
        • Ubuntu 18.04
        • Ubuntu 20.04
      • DotNet optimization pack
        • DotNet Core 3.1
      • Java-OpenJDK optimization pack
        • Java OpenJDK 8
        • Java OpenJDK 11
      • OpenJ9 optimization pack
        • IBM J9 VM 6
        • IBM J9 VM 8
        • Eclipse Open J9 11
      • NodeJS optimization pack
        • NodeJS
      • GO optimization pack
        • GO 1
      • Web Application optimization pack
        • Web Application
      • Docker optimization pack
        • Container
      • Kubernetes optimization pack
        • Kubernetes Pod
        • Kubernetes Container
        • Kubernetes Workload
        • Kubernetes Namespace
        • Kubernetes Cluster
      • WebSphere optimization pack
        • WebSphere 8.5
        • WebSphere Liberty ND
      • AWS optimization pack
        • EC2
        • Lambda
      • PostgreSQL optimization pack
        • PostgreSQL 11
        • PostgreSQL 12
      • Cassandra optimization pack
        • Cassandra
      • MySQL Database optimization pack
        • MySQL 8.0
      • Oracle Database optimization pack
        • Oracle Database 12c
        • Oracle Database 18c
        • Oracle Database 19c
        • RDS Oracle Database 11g
        • RDS Oracle Database 12c
      • MongoDB optimization pack
        • MongoDB 4
        • MongoDB 5
      • Elasticsearch optimization pack
        • Elasticsearch 6
      • Spark optimization pack
        • Spark Application 2.2.0
        • Spark Application 2.3.0
        • Spark Application 2.4.0
    • Command Line commands
      • Administration commands
      • User and Workspace management commands
      • Authentication commands
      • Resource management commands
      • Optimizer options commands
  • Knowledge Base
    • Setting up a Konakart environment for testing Akamas
    • Modeling a sample Java-based e-commerce application (Konakart)
    • Optimizing a web application
    • Optimizing a sample Java OpenJ9 application
    • Optimizing a sample Java OpenJDK application
    • Optimizing a sample Linux system
    • Optimizing a MongoDB server instance
    • Optimizing a Kubernetes application
    • Leveraging Ansible to automate AWS instance management
    • Guidelines for optimizing AWS EC2 instances
    • Optimizing a sample application running on AWS
    • Optimizing a Spark application
    • Optimizing an Oracle Database server instance
    • Optimizing an Oracle Database for an e-commerce service
    • Guidelines for optimizing Oracle RDS
    • Optimizing a MySQL server database running Sysbench
    • Optimizing a MySQL server database running OLTPBench
    • Optimizing a live K8s deployment
    • Optimizing a live full-stack deployment (K8s + JVM)
  • Akamas Free Trial
Powered by GitBook
On this page
  • System
  • Component
  • Component Type
  • Parameters
  • Metrics

Was this helpful?

Export as PDF
  1. Knowledge Base

Modeling a sample Java-based e-commerce application (Konakart)

Last updated 2 years ago

Was this helpful?

This page provides code snippets for each Akamas construct by considering the Konakart, a Java-based e-commerce application (), as a reference and modeling it as a 2-tier application, with an application server and a database (MySQL) layers.

For simplicity's sake, the optimization use case is defined as follows:

  • Optimization scope: JVM parameters

  • Optimization goal: reduce the application memory footprint (i.e. heap max that can be allocated by the JVM)

  • Optimization constraints: no impact on service level (i.e. response times, throughput, and error rate have to be the same before/after the optimization)

System

This is the YAML file providing the system definition for the reference use case:

name: Konakart
description: Konakart e-commerce application

Component

Since the optimization scope only considers JVM parameters, only a java component needs to be modeled.

The following snippet defines a Konakart java component based on a java-openjdk-11 component type.

name: Konakart jvm
description: jvm layer of Konakart e-commerce
componentType: java-openjdk-11

A different optimization scope would have required a different modeling approach. For instance, a broader optimization scope including the Linux layers of both application and database and the database layer would have required 3 additional components: 2 distinct components (of the same component type) for the 2 Linux layers and 1 component for the database layer.

From a monitoring perspective, there are only 2 mandatory data sources: the JVM layer, which will provide the goal metric needed to evaluate the score (heap size), and the web application layer, which will provide the metrics needed to evaluate optimization constraints (response time, throughput and error rate). The web-application component is based on a particular component type that aims to ease the collection of end-users metrics and has no parameters attached. Generally speaking the definition of a component based on the web application component type can be handy every time an optimization foresees the execution of a performance test and it is required to evaluate the end-to-end metrics.

The following snippet defines a Konakart component based on a web-application component type.

name: Konakart
description: Web Application layer of Konakart e-commerce
componentType: Web Application

A more comprehensive approach to telemetries could include additional metrics and data sources to provide a better understanding of the system behavior. The example provided only focuses on the mandatory metrics and the components needed to model them.

Component Type

Here is a (simplified) component types definition for the reference use case.

name: java-openjdk-11
description: The component type of Java OpenJDK and Oracle HotSpot version 11

parameters:
  - name: jvm_maxHeapSize
    domain:
      type: integer
      domain: [16, 102400]
    defaultValue: 1024
    operators:
      FileConfigurator:
        confTemplate: -Xmx${value}M

  - name: jvm_gcType
    domain:
      type: categorical
      categories: [Serial, Parallel, ConcMarkSweep, G1]
    defaultValue: G1
    operators:
      FileConfigurator:
        confTemplate: -XX:+Use${value}GC

metrics:
  - name: jvm_heap_size
  - name: jvm_gc_time
name: Web Application
description: Component-type containing the metrics representing a web application.

parameters: []

metrics:
  - name: transactions_response_time
  - name: transactions_throughput
  - name: transactions_error_rate

These component types are included in the "Java" and "Web Application" Optimization Packs and are available in any Akamas installation.

Parameters

Here is a (simplified) definition of the java parameters related to the java component type used for the reference use case.

parameters:
  - name: jvm_maxHeapSize
    description: Maximum heap size
    unit: megabytes

  - name: jvm_gcType
    description: Type of the garbage collection algorithm
    unit: ""

These parameters are included in the "Java" and "Web Application" Optimization Packs and are available in any Akamas installation.

Metrics

Here is a (simplified) definition of the web-application metrics related to the web-application component type used for the reference use case.

metrics:
  - name: transactions_response_time
    description: The average transaction response time
    unit: milliseconds

  - name: transactions_throughput
    description: The number of transactions executed per second
    unit: transactions/s

 - name: transactions_error_rate
    description: The percentage of transactions flagged as error
    unit: percent

These parameters are included in the "Web Application" Optimization Pack and are available in any Akamas installation.

https://www.konakart.com/