Akamas Docs
3.1.2
3.1.2
  • How to use this documentation
  • Getting started with Akamas
    • Introduction to Akamas
    • Licensing
    • Deployment
      • Cloud Hosting
    • Security
    • Maintenance & Support (M&S) Services
      • Customer Support Services
      • Support levels for Customer Support Services
      • Support levels for software versions
      • Support levels with Akamas 3.1
  • Installing Akamas
    • Akamas Architecture
    • Prerequisites
      • Hardware Requirements
      • Software Requirements
      • Network requirements
    • Install Akamas dependencies
    • Install the Akamas Server
      • Online installation mode
        • Online installation behind a Proxy server
      • Offline installation mode
      • Changing UI Ports
      • Setup HTTPS configuration
    • Install the Akamas CLI
      • Setup the Akamas CLI
      • Verify the Akamas CLI
      • Initialize Akamas CLI
      • Change CLI configuration
    • Verify the Akamas Server
    • Install the Akamas license
    • Manage anonymous data collection
    • Install an Akamas Workstation
    • Troubleshoot install issues
    • Manage the Akamas Server
      • Akamas logs
      • Audit logs
      • Install upgrades and patches
      • Monitor the Akamas Server
      • Backup & Recover of the Akamas Server
  • Using Akamas
    • General optimization process and methodology
    • Preparing optimization studies
      • Modeling systems
      • Modeling components
        • Creating custom optimization packs
        • Managing optimization packs
      • Creating telemetry instances
      • Creating automation workflows
        • Creating workflows for offline studies
        • Performing load testing to support optimization activities
        • Creating workflows for live optimizations
      • Creating optimization studies
        • Defining optimization goal & constraints
        • Defining windowing policies
        • Defining KPIs
        • Defining parameters & metrics
        • Defining workloads
        • Defining optimization steps
        • Setting safety policies
    • Running optimization studies
      • Before running optimization studies
      • Analyzing results of offline optimization studies
        • Optimization Insights
      • Analyzing results of live optimization studies
      • Before applying optimization results
    • Guidelines for choosing optimization parameters
      • Guidelines for JVM (OpenJ9)
      • Guidelines for JVM layer (OpenJDK)
      • Guidelines for Oracle Database
      • Guidelines for PostgreSQL
    • Guidelines for defining optimization studies
      • Optimizing Linux
      • Optimizing Java OpenJDK
      • Optimizing OpenJ9
      • Optimizing Web Applications
      • Optimizing Kubernetes
      • Optimizing Spark
      • Optimizing Oracle Database
      • Optimizing MongoDB
      • Optimizing MySQL Database
      • Optimizing PostgreSQL
  • Integrating Akamas
    • Integrating Telemetry Providers
      • CSV provider
        • Install CSV provider
        • Create CSV provider instances
      • Dynatrace provider
        • Install Dynatrace provider
        • Create Dynatrace provider instances
      • Prometheus provider
        • Install Prometheus provider
        • Create Prometheus provider instances
        • CloudWatch Exporter
        • OracleDB Exporter
      • Spark History Server provider
        • Install Spark History Server provider
        • Create Spark History Server provider instances
      • NeoLoadWeb provider
        • Setup NeoLoadWeb telemetry provider
        • Create NeoLoadWeb provider instances
      • LoadRunner Professional provider
        • Install LoadRunner Professional provider
        • Create LoadRunner Professional provider instances
      • LoadRunner Enterprise provider
        • Install LoadRunner Enterprise provider
        • Create LoadRunner Enterprise provider instances
      • AWS provider
        • Install AWS provider
        • Create AWS provider instances
    • Integrating Configuration Management
    • Integrating Value Stream Delivery
    • Integrating Load Testing
      • Integrating NeoLoad
      • Integrating Load Runner Professional
      • Integrating LoadRunner Enterprise
  • Akamas Reference
    • Glossary
      • System
      • Component
      • Metric
      • Parameter
      • Component Type
      • Workflow
      • Telemetry Provider
      • Telemetry Instance
      • Optimization Pack
      • Goals & Constraints
      • KPI
      • Optimization Study
      • Offline Optimization Study
      • Live Optimization Study
      • Workspace
    • Construct templates
      • System template
      • Component template
      • Parameter template
      • Metric template
      • Component Types template
      • Telemetry Provider template
      • Telemetry Instance template
      • Workflows template
      • Study template
        • Goal & Constraints
        • Windowing policy
          • Trim windowing
          • Stability windowing
        • Parameter selection
        • Metric selection
        • Workload selection
        • KPIs
        • Steps
          • Baseline step
          • Bootstrap step
          • Preset step
          • Optimize step
        • Parameter rendering
    • Workflow Operators
      • General operator arguments
      • Executor Operator
      • FileConfigurator Operator
      • LinuxConfigurator Operator
      • WindowsExecutor Operator
      • WindowsFileConfigurator Operator
      • Sleep Operator
      • OracleExecutor Operator
      • OracleConfigurator Operator
      • SparkSSHSubmit Operator
      • SparkSubmit Operator
      • SparkLivy Operator
      • NeoLoadWeb Operator
      • LoadRunner Operator
      • LoadRunnerEnteprise Operator
    • Telemetry metric mapping
      • Dynatrace metrics mapping
      • Prometheus metrics mapping
      • NeoLoadWeb metrics mapping
      • Spark History Server metrics mapping
      • LoadRunner metrics mapping
    • Optimization Packs
      • Linux optimization pack
        • Amazon Linux
        • Amazon Linux 2
        • Amazon Linux 2022
        • CentOS 7
        • CentOS 8
        • RHEL 7
        • RHEL 8
        • Ubuntu 16.04
        • Ubuntu 18.04
        • Ubuntu 20.04
      • DotNet optimization pack
        • DotNet Core 3.1
      • Java-OpenJDK optimization pack
        • Java OpenJDK 8
        • Java OpenJDK 11
      • OpenJ9 optimization pack
        • IBM J9 VM 6
        • IBM J9 VM 8
        • Eclipse Open J9 11
      • NodeJS optimization pack
        • NodeJS
      • GO optimization pack
        • GO 1
      • Web Application optimization pack
        • Web Application
      • Docker optimization pack
        • Container
      • Kubernetes optimization pack
        • Kubernetes Pod
        • Kubernetes Container
        • Kubernetes Workload
        • Kubernetes Namespace
        • Kubernetes Cluster
      • WebSphere optimization pack
        • WebSphere 8.5
        • WebSphere Liberty ND
      • AWS optimization pack
        • EC2
        • Lambda
      • PostgreSQL optimization pack
        • PostgreSQL 11
        • PostgreSQL 12
      • Cassandra optimization pack
        • Cassandra
      • MySQL Database optimization pack
        • MySQL 8.0
      • Oracle Database optimization pack
        • Oracle Database 12c
        • Oracle Database 18c
        • Oracle Database 19c
        • RDS Oracle Database 11g
        • RDS Oracle Database 12c
      • MongoDB optimization pack
        • MongoDB 4
        • MongoDB 5
      • Elasticsearch optimization pack
        • Elasticsearch 6
      • Spark optimization pack
        • Spark Application 2.2.0
        • Spark Application 2.3.0
        • Spark Application 2.4.0
    • Command Line commands
      • Administration commands
      • User and Workspace management commands
      • Authentication commands
      • Resource management commands
      • Optimizer options commands
  • Knowledge Base
    • Setting up a Konakart environment for testing Akamas
    • Modeling a sample Java-based e-commerce application (Konakart)
    • Optimizing a web application
    • Optimizing a sample Java OpenJ9 application
    • Optimizing a sample Java OpenJDK application
    • Optimizing a sample Linux system
    • Optimizing a MongoDB server instance
    • Optimizing a Kubernetes application
    • Leveraging Ansible to automate AWS instance management
    • Guidelines for optimizing AWS EC2 instances
    • Optimizing a sample application running on AWS
    • Optimizing a Spark application
    • Optimizing an Oracle Database server instance
    • Optimizing an Oracle Database for an e-commerce service
    • Guidelines for optimizing Oracle RDS
    • Optimizing a MySQL server database running Sysbench
    • Optimizing a MySQL server database running OLTPBench
    • Optimizing a live K8s deployment
    • Optimizing a live full-stack deployment (K8s + JVM)
  • Akamas Free Trial
Powered by GitBook
On this page
  • Environment Setup
  • MySQL Installation
  • Sysbench Installation
  • Optimization Setup
  • System
  • Workflow
  • Telemetry
  • Study

Was this helpful?

Export as PDF
  1. Knowledge Base

Optimizing a MySQL server database running Sysbench

Last updated 1 year ago

Was this helpful?

In this example study, we are going to optimize a MySQL instance by setting the performance goal of maximizing the throughput of operations towards the database.

As regards the workload generation, in this example we are going to use Sysbench, a popular open-source benchmarking suite.

To import the results of the benchmark into Akamas, we are going to use a custom script to convert its output to a CSV file that can be parsed by the .

Environment Setup

In order to run the Sysbench suite against a MySQL installation, you need to first install and configure the two software. In the following , we will assume that both MySQL and Sysbench will run on the same machine, to obtain more significant results in terms of performance you might want to run them on separate hosts.

A set of scripts is provided to support all the setup steps.

MySQL Installation

To install MySQL please follow the official documentation. In the following, we will make a few assumptions on the location of the configuration files, the user running the server, and the location of the datafiles. These assumptions are based on a default installation of MySQL on an Ubuntu instance performed via apt.

  • Configuration file: /etc/mysql/conf.d/mysql.cnf

  • MySQL user: mysql

  • MySQL root user password: root

This is a template for the configuration file mysql.cnf.template

[mysqld]
socket=/tmp/mysql.sock
ssl=0
innodb_buffer_pool_size     = ${mysql.mysql_innodb_buffer_pool_size}
innodb_thread_sleep_delay   = ${mysql.mysql_innodb_thread_sleep_delay}
innodb_flush_method         = ${mysql.mysql_innodb_flush_method}
innodb_log_file_size        = ${mysql.mysql_innodb_log_file_size}
innodb_thread_concurrency   = ${mysql.mysql_innodb_thread_concurrency}
innodb_max_dirty_pages_pct  = ${mysql.mysql_innodb_max_dirty_pages_pct}
innodb_read_ahead_threshold = ${mysql.mysql_innodb_read_ahead_threshold}

If your installation of MySQL has different default values for these parameters please update the provided scripts accordingly.

Sysbench Installation

To install Sysbench on an ubuntu machine run the following command

sudo apt install sysbench

To verify your installation of Sysbench and initialize the database you can use the scripts provided here below and place them in the /home/ubuntu/scripts folder. Move in the folder, make sure MySQL is already running, and run the init-db.sh script.

This is the init-db.sh script:

#!/bin/bash
set -e
cd "$(dirname "$0")"
mysql -u root -proot -e "CREATE DATABASE IF NOT EXISTS sbtest"

HOST="--mysql-host=127.0.0.1 --mysql-port=3306 --mysql-user=root --mysql-password=root"
sysbench oltp_read_only --tables=10 --table_size=1000000 --threads=100 $HOST --time=300 --max-requests=0 --report-interval=1 --rand-type=uniform --db-driver=mysql --mysql-db=sbtest --mysql-ssl=off prepare| tee -a res.warmup.ro.txt

#sleep 5
#sudo systemctl stop mysql
#
##Create the backup
#echo "Backing up the database"
#sudo rm -rf /tmp/backup
#sudo mkdir /tmp/backup
#sudo rsync -r --progress /var/lib/mysql /tmp/backup/
#sleep 2
#
#sudo systemctl start mysql
#sudo systemctl status mysql

This script will:

  • connect to your MySQL installation

  • create a sbtest database for the test

  • run the Sysbench data generation phase to populate the database

The init-db.sh script contains some information on the amount of data to generate. The default setting is quite small and should be used for testing purposes. You can then modify the test to suit your benchmarking needs. If you update the script please also update the run_benchmark.sh script accordingly.

Optimization Setup

Here follow a step by step explanation of all the required configuration for this example. You can find attached a zip file that contains all of the YAML files for your convenience.

System

In this example, we are interested in optimizing MySQL settings and measuring the peak throughput measured using Sysbench. Hence, we are going to create two components:

  • A mysql component which represents the MySQL instance, including all the configuration parameters

  • A Sysbenchcomponent which represents Sysbench and contains the custom metrics reported by the benchmark

The Sysbench component

MySQL is a widespread technology and Akamas provides a specific Optimization Pack to support its optimization. Sysbench, on the other hand, is a benchmark application and is not yet supported by a specific optimization pack. In order to use it in our study, we will need to define its metrics first. This operation can be done once and the created component type can be used across many systems.

First, build a metrics.yamlfile with the following content:

---
metrics:
  - name: throughput
    description: The throughput of the database
    unit: tps

  - name: response_time_avg
    description: The average response time of the database
    unit: milliseconds

  - name: response_time_95th
    description: The response time 95th percentile of the database
    unit: milliseconds

  - name: duration
    description: The duration of the task (load or benchmark execution)
    unit: seconds

You can now create the metrics by issuing the following command:

akamas create metrics metrics.yaml

Finally, create a file named sysbench.yaml with the following definition of the component:

name: Sysbench
description: >
  Sysbench benchmark. It is a purely synthetic benchmark that can create isolated contention on system  resources. Each of the benchmark’s transaction imposes some load on three specific resources: CPU, disk I/O, and locks. It is also used to simulate a database workload.
parameters: []
metrics:
  - name: throughput
  - name: response_time_avg
  - name: response_time_95th
  - name: duration

You can now create the component by issuing the following command:

akamas create component-type sysbench.yaml

Model the system

Here’s the definition of our system (system.yaml):

name: MySQL-Sysbench
description: A system for optimizing MySQL with Sysbench

Here’s the definition of our mysql component (mysql.yaml):

name: mysql
description: MySQL
componentType: MySQL 8.0
properties:
    hostname: gibbo.dev.akamas.io
    sshPort: "22"
    username: ubuntu
    sourcePath: /home/ubuntu/scripts/my.cnf.template
    targetPath: /home/ubuntu/scripts/my.cnf
    prometheus:
      instance: gibbo
      job: mysql_exporter
    key: |
      -----BEGIN RSA PRIVATE KEY-----

      -----END RSA PRIVATE KEY-----

Please make sure the component properties are correct for your environment (e.g. hostname, username, key, file paths, etc.).

Here’s the definition of our Sysbench component (sysbench.yaml):

name: Sysbench
description: Sysbench Benchmark for database systems
componentType: Sysbench

We can create the system by running:

akamas create system system.yaml

We can then create the components by running the following commands:

akamas create component mysql.yaml MySQL-Sysbench
akamas create component sysbench.yaml MySQL-Sysbench

Workflow

A workflow for optimizing MySQL can be structured in 6 tasks:

  1. Reset Sysbench data

  2. Configure MySQL

  3. Restart MySQL

  4. Launch the benchmark

  5. Parse the benchmark results

Here below you can find the scripts that codify these tasks.

This is the restart-mysql.sh script:

#!/usr/bin/env bash
set -e

cd "$(dirname "$0")"

#Stop the DB
echo "Stopping MySQL"
sudo systemctl stop mysql &> /dev/null
#sudo systemctl status mysql

#Apply Configuration
echo "Copying the configuration"
sudo cp my.cnf /etc/mysql/conf.d/mysql.cnf

sync; sudo sh -c "echo 3 > /proc/sys/vm/drop_caches"; sync

#Restart DB
echo "Restarting the database"
sudo systemctl start mysql &> /dev/null
#sudo systemctl status mysql
sleep 2

This is the clean_bench.sh script:

#!/usr/bin/env bash
set -e
cd "$(dirname "$0")"

if ! test -d results || [[ -z "$(ls -A results)" ]]; then
    echo "First iteration"
    mkdir -p results
    exit 0
fi

rm -rf results
mkdir -p results

This is the run_test.sh script:

#!/bin/bash
set -e

cd "$(dirname "$0")"

HOST="--mysql-host=127.0.0.1 --mysql-port=3306 --mysql-user=root --mysql-password=root"
sysbench oltp_read_only --tables=10 --table_size=1000000 --threads=100 $HOST --time=60 --max-requests=0 --report-interval=1 --rand-type=uniform --db-driver=mysql --mysql-db=sbtest --mysql-ssl=off run | tee -a results/res.txt

This file parse_csv.sh script:

#!/bin/bash
set -e
cd "$(dirname "$0")"
OUTFILE=$(pwd)/results/output.csv
INFILE=$(pwd)/results/res.txt
COMPONENT=Sysbench
epoch_now=$(date +"%s")
num_samples=$(grep -c "thds" ${INFILE})
epoch_start=$(($epoch_now - $num_samples))
cat $INFILE | while read line
do
        ts_sysbench=$(echo $line | cut -d' ' -f2)
        # CSV header
        [ "$ts_sysbench" == "started!" ] && echo "component,ts,throughput,response_time_95pct" > ${OUTFILE} && continue
        # CSV body
        tps=$(echo $line | cut -d' ' -f7)
        lat_95pct=$(echo $line | cut -d' ' -f14)
        # skip unless it's a metric line
        echo $line | grep -q "thds" || continue
        ts_seconds=$(echo $ts_sysbench | sed 's/s//')
        epoch_current=$(($epoch_start + $ts_seconds))
        ts=$(date -d @$(($epoch_current)) "+%Y-%m-%d %H:%M:%S")
        echo "${COMPONENT},$ts,$tps,$lat_95pct" >> ${OUTFILE}
done

Here is the complete Akamas workflow for this example (workflow.yaml):

name: MySQL-Sysbench
tasks:

  - name: Reset Sysbench data
    operator: Executor
    arguments:
      command: "bash /home/ubuntu/scripts/clean_bench.sh"
      component: mysql

  - name: Configure MySQL
    operator: FileConfigurator
    arguments:
      component: mysql

  - name: Restart MySQL
    operator: Executor
    arguments:
      command: "bash /home/ubuntu/scripts/restart-mysql.sh"
      component: mysql

  - name: test
    operator: Executor
    arguments:
      command: "bash /home/ubuntu/scripts/run_test.sh"
      component: mysql

  - name: Parse CSV results
    operator: Executor
    arguments:
      command: "bash /home/ubuntu/scripts/parse_csv.sh"
      component: mysql

You can create the workflow by running:

akamas create workflow workflow.yaml

Telemetry

This telemetry provider can be installed running:

akamas install telemetry-provider telemetry/providers/csv.yaml

To start using the provider, we need to define a telemetry instance (csv.yaml):

provider: csv
config:
  protocol: scp
  address: gibbo.dev.akamas.io
  username: ubuntu
  authType: key
  auth: |
    -----BEGIN RSA PRIVATE KEY-----

    -----END RSA PRIVATE KEY-----
  remoteFilePattern: /home/ubuntu/scripts/results/output.csv
  csvFormat: horizontal
  componentColumn: component
  timestampColumn: ts
  timestampFormat: yyyy-MM-dd HH:mm:ss

metrics:
- metric: throughput
  datasourceMetric: throughput
- metric: response_time_95th
  datasourceMetric: response_time_95pct

Please make sure the telemetry configuration is correct for your environment (e.g. hostname, username, key, file paths, etc.).

You can create the telemetry instance and attach it to the system by running:

akamas create telemetry-instance csv.yaml MySQL-Sysbench

Study

In this example, we are going to leverage Akamas AI-driven optimization capabilities to maximize MySQL database transaction throughput, as measured by the Sysbench benchmark.

Here is the Akamas study definition (study.yaml):

name: MySQL Sysbench Tuning
description: Tuning of mysql-8 with Sysbench benchmark
system: MySQL-Sysbench
workflow: MySQL-Sysbench

goal:
  objective: maximize
  function:
    formula: Sysbench.throughput
  constraints: []

# Akamas score automatically trim 1m of warm-up and 1m of tear-down
windowing:
  task: test
  type: trim
  trim: [1m, 1m]

# We optimize some common MySQL parameters
parametersSelection:
  - name: mysql.mysql_innodb_buffer_pool_size
    domain: [5242880, 10485760]
  - name: mysql.mysql_innodb_thread_sleep_delay
    domain: [1,3000]
  - name: mysql.mysql_innodb_flush_method
  - name: mysql.mysql_innodb_log_file_size
  - name: mysql.mysql_innodb_thread_concurrency
    domain: [0, 4]
  - name: mysql.mysql_innodb_max_dirty_pages_pct
  - name: mysql.mysql_innodb_read_ahead_threshold

# The metrics we are interested in
metricsSelection:
  - Sysbench.throughput
  - Sysbench.response_time_95th

# Each experiment can run multiple trials to evaluate stability
numberOfTrials: 1

steps:
# We first run a baseline experiment with default values
  - name: baseline
    type: baseline
    renderParameters: ["mysql.*"]

# We then optimize for 200 experiments
  - name: optimize
    type: optimize
    optimizer: AKAMAS
    numberOfExperiments: 200
    maxFailedExperiments: 200
    renderParameters: ["mysql.*"]

You may need to update some parameter domains based on your environment (e.g. InnoDB buffer pool size maximum value depends on your server available memory)

You can create the study by running:

akamas create study study.yaml

You can then start it by running:

akamas start study "MySQL Sysbench Tuning"

You can now follow the study progress using the UI and explore the results using the Analysis and Metrics tabs.

We are going to use Akamas telemetry capability to import the metrics related to Sysbench benchmark results, in particular, the transaction throughput and latency. To achieve this we can leverage the Akamas , which extracts metrics from CSV files. The CSV file is the one produced in the last task of the workflow of the study.

CSV provider
CSV provider