Akamas Docs
3.1.2
3.1.2
  • How to use this documentation
  • Getting started with Akamas
    • Introduction to Akamas
    • Licensing
    • Deployment
      • Cloud Hosting
    • Security
    • Maintenance & Support (M&S) Services
      • Customer Support Services
      • Support levels for Customer Support Services
      • Support levels for software versions
      • Support levels with Akamas 3.1
  • Installing Akamas
    • Akamas Architecture
    • Prerequisites
      • Hardware Requirements
      • Software Requirements
      • Network requirements
    • Install Akamas dependencies
    • Install the Akamas Server
      • Online installation mode
        • Online installation behind a Proxy server
      • Offline installation mode
      • Changing UI Ports
      • Setup HTTPS configuration
    • Install the Akamas CLI
      • Setup the Akamas CLI
      • Verify the Akamas CLI
      • Initialize Akamas CLI
      • Change CLI configuration
    • Verify the Akamas Server
    • Install the Akamas license
    • Manage anonymous data collection
    • Install an Akamas Workstation
    • Troubleshoot install issues
    • Manage the Akamas Server
      • Akamas logs
      • Audit logs
      • Install upgrades and patches
      • Monitor the Akamas Server
      • Backup & Recover of the Akamas Server
  • Using Akamas
    • General optimization process and methodology
    • Preparing optimization studies
      • Modeling systems
      • Modeling components
        • Creating custom optimization packs
        • Managing optimization packs
      • Creating telemetry instances
      • Creating automation workflows
        • Creating workflows for offline studies
        • Performing load testing to support optimization activities
        • Creating workflows for live optimizations
      • Creating optimization studies
        • Defining optimization goal & constraints
        • Defining windowing policies
        • Defining KPIs
        • Defining parameters & metrics
        • Defining workloads
        • Defining optimization steps
        • Setting safety policies
    • Running optimization studies
      • Before running optimization studies
      • Analyzing results of offline optimization studies
        • Optimization Insights
      • Analyzing results of live optimization studies
      • Before applying optimization results
    • Guidelines for choosing optimization parameters
      • Guidelines for JVM (OpenJ9)
      • Guidelines for JVM layer (OpenJDK)
      • Guidelines for Oracle Database
      • Guidelines for PostgreSQL
    • Guidelines for defining optimization studies
      • Optimizing Linux
      • Optimizing Java OpenJDK
      • Optimizing OpenJ9
      • Optimizing Web Applications
      • Optimizing Kubernetes
      • Optimizing Spark
      • Optimizing Oracle Database
      • Optimizing MongoDB
      • Optimizing MySQL Database
      • Optimizing PostgreSQL
  • Integrating Akamas
    • Integrating Telemetry Providers
      • CSV provider
        • Install CSV provider
        • Create CSV provider instances
      • Dynatrace provider
        • Install Dynatrace provider
        • Create Dynatrace provider instances
      • Prometheus provider
        • Install Prometheus provider
        • Create Prometheus provider instances
        • CloudWatch Exporter
        • OracleDB Exporter
      • Spark History Server provider
        • Install Spark History Server provider
        • Create Spark History Server provider instances
      • NeoLoadWeb provider
        • Setup NeoLoadWeb telemetry provider
        • Create NeoLoadWeb provider instances
      • LoadRunner Professional provider
        • Install LoadRunner Professional provider
        • Create LoadRunner Professional provider instances
      • LoadRunner Enterprise provider
        • Install LoadRunner Enterprise provider
        • Create LoadRunner Enterprise provider instances
      • AWS provider
        • Install AWS provider
        • Create AWS provider instances
    • Integrating Configuration Management
    • Integrating Value Stream Delivery
    • Integrating Load Testing
      • Integrating NeoLoad
      • Integrating Load Runner Professional
      • Integrating LoadRunner Enterprise
  • Akamas Reference
    • Glossary
      • System
      • Component
      • Metric
      • Parameter
      • Component Type
      • Workflow
      • Telemetry Provider
      • Telemetry Instance
      • Optimization Pack
      • Goals & Constraints
      • KPI
      • Optimization Study
      • Offline Optimization Study
      • Live Optimization Study
      • Workspace
    • Construct templates
      • System template
      • Component template
      • Parameter template
      • Metric template
      • Component Types template
      • Telemetry Provider template
      • Telemetry Instance template
      • Workflows template
      • Study template
        • Goal & Constraints
        • Windowing policy
          • Trim windowing
          • Stability windowing
        • Parameter selection
        • Metric selection
        • Workload selection
        • KPIs
        • Steps
          • Baseline step
          • Bootstrap step
          • Preset step
          • Optimize step
        • Parameter rendering
    • Workflow Operators
      • General operator arguments
      • Executor Operator
      • FileConfigurator Operator
      • LinuxConfigurator Operator
      • WindowsExecutor Operator
      • WindowsFileConfigurator Operator
      • Sleep Operator
      • OracleExecutor Operator
      • OracleConfigurator Operator
      • SparkSSHSubmit Operator
      • SparkSubmit Operator
      • SparkLivy Operator
      • NeoLoadWeb Operator
      • LoadRunner Operator
      • LoadRunnerEnteprise Operator
    • Telemetry metric mapping
      • Dynatrace metrics mapping
      • Prometheus metrics mapping
      • NeoLoadWeb metrics mapping
      • Spark History Server metrics mapping
      • LoadRunner metrics mapping
    • Optimization Packs
      • Linux optimization pack
        • Amazon Linux
        • Amazon Linux 2
        • Amazon Linux 2022
        • CentOS 7
        • CentOS 8
        • RHEL 7
        • RHEL 8
        • Ubuntu 16.04
        • Ubuntu 18.04
        • Ubuntu 20.04
      • DotNet optimization pack
        • DotNet Core 3.1
      • Java-OpenJDK optimization pack
        • Java OpenJDK 8
        • Java OpenJDK 11
      • OpenJ9 optimization pack
        • IBM J9 VM 6
        • IBM J9 VM 8
        • Eclipse Open J9 11
      • NodeJS optimization pack
        • NodeJS
      • GO optimization pack
        • GO 1
      • Web Application optimization pack
        • Web Application
      • Docker optimization pack
        • Container
      • Kubernetes optimization pack
        • Kubernetes Pod
        • Kubernetes Container
        • Kubernetes Workload
        • Kubernetes Namespace
        • Kubernetes Cluster
      • WebSphere optimization pack
        • WebSphere 8.5
        • WebSphere Liberty ND
      • AWS optimization pack
        • EC2
        • Lambda
      • PostgreSQL optimization pack
        • PostgreSQL 11
        • PostgreSQL 12
      • Cassandra optimization pack
        • Cassandra
      • MySQL Database optimization pack
        • MySQL 8.0
      • Oracle Database optimization pack
        • Oracle Database 12c
        • Oracle Database 18c
        • Oracle Database 19c
        • RDS Oracle Database 11g
        • RDS Oracle Database 12c
      • MongoDB optimization pack
        • MongoDB 4
        • MongoDB 5
      • Elasticsearch optimization pack
        • Elasticsearch 6
      • Spark optimization pack
        • Spark Application 2.2.0
        • Spark Application 2.3.0
        • Spark Application 2.4.0
    • Command Line commands
      • Administration commands
      • User and Workspace management commands
      • Authentication commands
      • Resource management commands
      • Optimizer options commands
  • Knowledge Base
    • Setting up a Konakart environment for testing Akamas
    • Modeling a sample Java-based e-commerce application (Konakart)
    • Optimizing a web application
    • Optimizing a sample Java OpenJ9 application
    • Optimizing a sample Java OpenJDK application
    • Optimizing a sample Linux system
    • Optimizing a MongoDB server instance
    • Optimizing a Kubernetes application
    • Leveraging Ansible to automate AWS instance management
    • Guidelines for optimizing AWS EC2 instances
    • Optimizing a sample application running on AWS
    • Optimizing a Spark application
    • Optimizing an Oracle Database server instance
    • Optimizing an Oracle Database for an e-commerce service
    • Guidelines for optimizing Oracle RDS
    • Optimizing a MySQL server database running Sysbench
    • Optimizing a MySQL server database running OLTPBench
    • Optimizing a live K8s deployment
    • Optimizing a live full-stack deployment (K8s + JVM)
  • Akamas Free Trial
Powered by GitBook
On this page
  • AWS policies
  • Exporter configuration
  • Prometheus configuration
  • Additional workflow task
  • Wait for metrics
  • Start/stop the exporter as needed
  • Custom Configuration file

Was this helpful?

Export as PDF
  1. Integrating Akamas
  2. Integrating Telemetry Providers
  3. Prometheus provider

CloudWatch Exporter

Last updated 1 year ago

Was this helpful?

This page describes how to set up a CloudWatch exporter in order to gather AWS metrics through the Prometheus provider. This is especially useful to monitor system metrics when you don’t have direct SSH access to AWS resources like EC2 Instances or if you want to gather AWS-specific metrics not available in the guest OS.

AWS policies

In order to fetch metrics fromCloudWatch, the exporter requires an IAM user or role with the following privileges:

  • cloudwatch:GetMetricData

  • cloudwatch:GetMetricStatistics

  • cloudwatch:ListMetrics

  • tag:GetResources

You can assign AWS-managed policies CloudWatchReadOnlyAccess and ResourceGroupsandTagEditorReadOnlyAccess to the desired user to enable these permissions.

Exporter configuration

The CloudWatch exporter repository is available on the . It requires a minimal configuration to fetch metrics from the desired AWS instances. Below is a short list of the parameters needed for a minimal configuration:

  • region: AWS region of the monitored resource

  • metrics: a list of objects containing filters for the exported metrics

    • aws_namespace: the namespace of the monitored resource

    • aws_metric_name: the name of the AWS metric to fetch

    • aws_dimensions: the dimension to expose as labels

    • aws_dimension_select: the dimension to filter over

    • aws_statistics: the list of metric statistics to expose

    • aws_tag_select: optional tags to filter on

      • tag_selections: map containing the list of values to select for each tag

      • resource_type_selection: resource type to fetch the tags from (see: )

      • resource_id_dimension: dimension to use for the resource id (see: )

Notice: AWS bills CloudWatch usage in batches of 1 million requests, where every metric counts as a single request. To avoid unnecessary expenses configure only the metrics you need.

region: us-east-2
metrics:
  - aws_namespace: AWS/EC2
    aws_metric_name: CPUUtilization
    aws_statistics: [Average]
    aws_dimensions: [InstanceId]
    # aws_dimension_select:
    #   InstanceId: [i-XXXXXXXXXXXXXXXXX]
    aws_tag_select:
      tag_selections:
        Name: [server1, server2]
      resource_type_selection: ec2:instance
      resource_id_dimension: InstanceId

  - aws_namespace: AWS/EC2
    aws_metric_name: NetworkIn
    aws_statistics: [Sum]
    aws_dimensions: [InstanceId]
    # aws_dimension_select:
    #   InstanceId: [i-XXXXXXXXXXXXXXXXX]
    aws_tag_select:
      tag_selections:
        Name: [server1, server2]
      resource_type_selection: ec2:instance
      resource_id_dimension: InstanceId

  - aws_namespace: AWS/EC2
    aws_metric_name: NetworkOut
    aws_statistics: [Sum]
    aws_dimensions: [InstanceId]
    # aws_dimension_select:
    #   InstanceId: [i-XXXXXXXXXXXXXXXXX]
    aws_tag_select:
      tag_selections:
        Name: [server1, server2]
      resource_type_selection: ec2:instance
      resource_id_dimension: InstanceId

  - aws_namespace: AWS/EC2
    aws_metric_name: NetworkPacketsIn
    aws_statistics: [Sum]
    aws_dimensions: [InstanceId]
    # aws_dimension_select:
    #   InstanceId: [i-XXXXXXXXXXXXXXXXX]
    aws_tag_select:
      tag_selections:
        Name: [server1, server2]
      resource_type_selection: ec2:instance
      resource_id_dimension: InstanceId

  - aws_namespace: AWS/EC2
    aws_metric_name: NetworkPacketsOut
    aws_statistics: [Sum]
    aws_dimensions: [InstanceId]
    # aws_dimension_select:
    #   InstanceId: [i-XXXXXXXXXXXXXXXXX]
    aws_tag_select:
      tag_selections:
        Name: [server1, server2]
      resource_type_selection: ec2:instance
      resource_id_dimension: InstanceId

  - aws_namespace: AWS/EC2
    aws_metric_name: CPUCreditUsage
    aws_statistics: [Sum]
    aws_dimensions: [InstanceId]
    # aws_dimension_select:
    #   InstanceId: [i-XXXXXXXXXXXXXXXXX]
    aws_tag_select:
      tag_selections:
        Name: [server1, server2]
      resource_type_selection: ec2:instance
      resource_id_dimension: InstanceId

  - aws_namespace: AWS/EC2
    aws_metric_name: CPUCreditBalance
    aws_statistics: [Average]
    aws_dimensions: [InstanceId]
    # aws_dimension_select:
    #   InstanceId: [i-XXXXXXXXXXXXXXXXX]
    aws_tag_select:
      tag_selections:
        Name: [server1, server2]
      resource_type_selection: ec2:instance
      resource_id_dimension: InstanceId

  - aws_namespace: AWS/EC2
    aws_metric_name: EBSReadOps
    aws_statistics: [Sum]
    aws_dimensions: [InstanceId]
    # aws_dimension_select:
    #   InstanceId: [i-XXXXXXXXXXXXXXXXX]
    aws_tag_select:
      tag_selections:
        Name: [server1, server2]
      resource_type_selection: ec2:instance
      resource_id_dimension: InstanceId

  - aws_namespace: AWS/EC2
    aws_metric_name: EBSWriteOps
    aws_statistics: [Sum]
    aws_dimensions: [InstanceId]
    # aws_dimension_select:
    #   InstanceId: [i-XXXXXXXXXXXXXXXXX]
    aws_tag_select:
      tag_selections:
        Name: [server1, server2]
      resource_type_selection: ec2:instance
      resource_id_dimension: InstanceId

  - aws_namespace: AWS/EC2
    aws_metric_name: EBSReadBytes
    aws_statistics: [Sum]
    aws_dimensions: [InstanceId]
    # aws_dimension_select:
    #   InstanceId: [i-XXXXXXXXXXXXXXXXX]
    aws_tag_select:
      tag_selections:
        Name: [server1, server2]
      resource_type_selection: ec2:instance
      resource_id_dimension: InstanceId

  - aws_namespace: AWS/EC2
    aws_metric_name: EBSWriteBytes
    aws_statistics: [Sum]
    aws_dimensions: [InstanceId]
    # aws_dimension_select:
    #   InstanceId: [i-XXXXXXXXXXXXXXXXX]
    aws_tag_select:
      tag_selections:
        Name: [server1, server2]
      resource_type_selection: ec2:instance
      resource_id_dimension: InstanceId

  - aws_namespace: AWS/EC2
    aws_metric_name: EBSIOBalance%
    aws_statistics: [Average]
    aws_dimensions: [InstanceId]
    # aws_dimension_select:
    #   InstanceId: [i-XXXXXXXXXXXXXXXXX]
    aws_tag_select:
      tag_selections:
        Name: [server1, server2]
      resource_type_selection: ec2:instance
      resource_id_dimension: InstanceId

  - aws_namespace: AWS/EC2
    aws_metric_name: EBSByteBalance%
    aws_statistics: [Average]
    aws_dimensions: [InstanceId]
    # aws_dimension_select:
    #   InstanceId: [i-XXXXXXXXXXXXXXXXX]
    aws_tag_select:
      tag_selections:
        Name: [server1, server2]
      resource_type_selection: ec2:instance
      resource_id_dimension: InstanceId
docker run -d --name cloudwatch_exporter \
  -p 9106:9106 \
  -v $(pwd)/cloudwatch-exporter.yaml:/config/config.yml \
  -e AWS_ACCESS_KEY_ID=${AWS_ACCESS_KEY_ID} -e AWS_SECRET_ACCESS_KEY=${AWS_SECRET_ACCESS_KEY} \
  prom/cloudwatch-exporter

Prometheus configuration

Notice: AWS bills CloudWatch usage in batches of 1 million requests, where every metric counts as a single request. To avoid unnecessary expenses configure an appropriate scraping interval.

scrape_configs:
  - job_name: cloudwatch_exporter
    scrape_interval: 60s
    scrape_timeout: 30s
    static_configs:
      - targets: [cloudwatch_exporter:9106]
    metric_relabel_configs:
      - source_labels: [tag_Name]
        regex: '(.+)'
        target_label: instance

Additional workflow task

Once you configured the exporter in the Prometheus configuration you can start to fetch metrics using the Prometheus provider. The following sections describe some scripts you can add as tasks in your workflow.

Wait for metrics

METRIC=aws_rds_cpuutilization_sum   # metric to check for
DELAY_SEC=15
RETRIES=60

NOW=`date +'%FT%T.%3NZ'`

for i in `seq $RETRIES`; do
  sleep $DELAY_SEC
  curl -sS "http://prometheus_host/api/v1/query?query=${METRIC}&time=${NOW}" | jq -ce '.data.result[]' && exit 0
done

exit 255

Start/stop the exporter as needed

Since Amazon bills your CloudWatch queries is wise to run the exporter only when needed. The following script allows you to manage the exporter from the workflow by adding the following tasks:

  • start the container right before the beginning of the load test (command: bash script.sh start)

#!/bin/bash

set -e

CMD=$1
CONT_NAME=cloudwatch_exporter

stop_cont() {
  [ -z `docker ps -aq -f "name=${CONT_NAME}"` ] || (echo Removing ${CONT_NAME} && docker rm -f ${CONT_NAME})
}

case $CMD in
  stop|remove)
    stop_cont
    ;;

  start)
    stop_cont

    AWS_ACCESS_KEY_ID=`awk 'BEGIN { FS = "=" } /aws_access_key_id/ {print $2 }' ~/.aws/credentials | tr -d '[:space:]'`
    AWS_SECRET_ACCESS_KEY=`awk 'BEGIN { FS = "=" } /aws_secret_access_key/ {print $2 }' ~/.aws/credentials | tr -d '[:space:]'`

    echo Starting container $CONT_NAME
    docker run -d --name $CONT_NAME \
      -p 9106:9106 \
      -v ~/oracle-database/utils/cloudwatch-exporter.yaml:/config/config.yml \
      -e AWS_ACCESS_KEY_ID=${AWS_ACCESS_KEY_ID} -e AWS_SECRET_ACCESS_KEY=${AWS_SECRET_ACCESS_KEY} \
      prom/cloudwatch-exporter
    ;;

    *)
    echo Unrecognized option $CMD
    exit 255
    ;;
esac

Custom Configuration file

The example below is the Akamas-supported configuration, fetching metrics of EC2 instances named server1 and server2.

region: us-east-2
metrics:
  - aws_namespace: AWS/EC2
    aws_metric_name: CPUUtilization
    aws_statistics: [Average]
    aws_dimensions: [InstanceId]
    # aws_dimension_select:
    #   InstanceId: [i-XXXXXXXXXXXXXXXXX]
    aws_tag_select:
      tag_selections:
        Name: [server1, server2]
      resource_type_selection: ec2:instance
      resource_id_dimension: InstanceId

  - aws_namespace: AWS/EC2
    aws_metric_name: NetworkIn
    aws_statistics: [Sum]
    aws_dimensions: [InstanceId]
    # aws_dimension_select:
    #   InstanceId: [i-XXXXXXXXXXXXXXXXX]
    aws_tag_select:
      tag_selections:
        Name: [server1, server2]
      resource_type_selection: ec2:instance
      resource_id_dimension: InstanceId

  - aws_namespace: AWS/EC2
    aws_metric_name: NetworkOut
    aws_statistics: [Sum]
    aws_dimensions: [InstanceId]
    # aws_dimension_select:
    #   InstanceId: [i-XXXXXXXXXXXXXXXXX]
    aws_tag_select:
      tag_selections:
        Name: [server1, server2]
      resource_type_selection: ec2:instance
      resource_id_dimension: InstanceId

  - aws_namespace: AWS/EC2
    aws_metric_name: NetworkPacketsIn
    aws_statistics: [Sum]
    aws_dimensions: [InstanceId]
    # aws_dimension_select:
    #   InstanceId: [i-XXXXXXXXXXXXXXXXX]
    aws_tag_select:
      tag_selections:
        Name: [server1, server2]
      resource_type_selection: ec2:instance
      resource_id_dimension: InstanceId

  - aws_namespace: AWS/EC2
    aws_metric_name: NetworkPacketsOut
    aws_statistics: [Sum]
    aws_dimensions: [InstanceId]
    # aws_dimension_select:
    #   InstanceId: [i-XXXXXXXXXXXXXXXXX]
    aws_tag_select:
      tag_selections:
        Name: [server1, server2]
      resource_type_selection: ec2:instance
      resource_id_dimension: InstanceId

  - aws_namespace: AWS/EC2
    aws_metric_name: CPUCreditUsage
    aws_statistics: [Sum]
    aws_dimensions: [InstanceId]
    # aws_dimension_select:
    #   InstanceId: [i-XXXXXXXXXXXXXXXXX]
    aws_tag_select:
      tag_selections:
        Name: [server1, server2]
      resource_type_selection: ec2:instance
      resource_id_dimension: InstanceId

  - aws_namespace: AWS/EC2
    aws_metric_name: CPUCreditBalance
    aws_statistics: [Average]
    aws_dimensions: [InstanceId]
    # aws_dimension_select:
    #   InstanceId: [i-XXXXXXXXXXXXXXXXX]
    aws_tag_select:
      tag_selections:
        Name: [server1, server2]
      resource_type_selection: ec2:instance
      resource_id_dimension: InstanceId

  - aws_namespace: AWS/EC2
    aws_metric_name: EBSReadOps
    aws_statistics: [Sum]
    aws_dimensions: [InstanceId]
    # aws_dimension_select:
    #   InstanceId: [i-XXXXXXXXXXXXXXXXX]
    aws_tag_select:
      tag_selections:
        Name: [server1, server2]
      resource_type_selection: ec2:instance
      resource_id_dimension: InstanceId

  - aws_namespace: AWS/EC2
    aws_metric_name: EBSWriteOps
    aws_statistics: [Sum]
    aws_dimensions: [InstanceId]
    # aws_dimension_select:
    #   InstanceId: [i-XXXXXXXXXXXXXXXXX]
    aws_tag_select:
      tag_selections:
        Name: [server1, server2]
      resource_type_selection: ec2:instance
      resource_id_dimension: InstanceId

  - aws_namespace: AWS/EC2
    aws_metric_name: EBSReadBytes
    aws_statistics: [Sum]
    aws_dimensions: [InstanceId]
    # aws_dimension_select:
    #   InstanceId: [i-XXXXXXXXXXXXXXXXX]
    aws_tag_select:
      tag_selections:
        Name: [server1, server2]
      resource_type_selection: ec2:instance
      resource_id_dimension: InstanceId

  - aws_namespace: AWS/EC2
    aws_metric_name: EBSWriteBytes
    aws_statistics: [Sum]
    aws_dimensions: [InstanceId]
    # aws_dimension_select:
    #   InstanceId: [i-XXXXXXXXXXXXXXXXX]
    aws_tag_select:
      tag_selections:
        Name: [server1, server2]
      resource_type_selection: ec2:instance
      resource_id_dimension: InstanceId

  - aws_namespace: AWS/EC2
    aws_metric_name: EBSIOBalance%
    aws_statistics: [Average]
    aws_dimensions: [InstanceId]
    # aws_dimension_select:
    #   InstanceId: [i-XXXXXXXXXXXXXXXXX]
    aws_tag_select:
      tag_selections:
        Name: [server1, server2]
      resource_type_selection: ec2:instance
      resource_id_dimension: InstanceId

  - aws_namespace: AWS/EC2
    aws_metric_name: EBSByteBalance%
    aws_statistics: [Average]
    aws_dimensions: [InstanceId]
    # aws_dimension_select:
    #   InstanceId: [i-XXXXXXXXXXXXXXXXX]
    aws_tag_select:
      tag_selections:
        Name: [server1, server2]
      resource_type_selection: ec2:instance
      resource_id_dimension: InstanceId

For a complete list of possible values for namespaces, metrics, and dimensions please refer to the official .

The suggested deployment mode for the exporter is through a . The following snippet provides a command line example to run the container (remember to provide your AWS credentials if needed and the path of the configuration file):

You can refer to the for more details or alternative deployment modes.

In order to scrape the newly created exporter add a new job to the configuration file. You will also need to define some in order to add the instance label required by Akamas to properly filter the incoming metrics. In the example below the instance label is copied from the instance’s Name tag:

It’s worth noting that CloudWatch may require some minutes to aggregate the stats according to the configured granularity, causing the telemetry provider to fail while trying to fetch data points not available yet. To avoid such issues you can add at the end of your workflow a task using an to wait for the CloudWatch metrics to be ready. The following script is an example of implementation:

stop the container after the metrics publication, as described in the (command: bash script.sh stop).

official project page
Resource Types
Resource Types
AWS CloudWatch User Guide
Docker image
official guide
relabeling rules
Executor operator
previous section