Akamas Docs
3.1.2
3.1.2
  • How to use this documentation
  • Getting started with Akamas
    • Introduction to Akamas
    • Licensing
    • Deployment
      • Cloud Hosting
    • Security
    • Maintenance & Support (M&S) Services
      • Customer Support Services
      • Support levels for Customer Support Services
      • Support levels for software versions
      • Support levels with Akamas 3.1
  • Installing Akamas
    • Akamas Architecture
    • Prerequisites
      • Hardware Requirements
      • Software Requirements
      • Network requirements
    • Install Akamas dependencies
    • Install the Akamas Server
      • Online installation mode
        • Online installation behind a Proxy server
      • Offline installation mode
      • Changing UI Ports
      • Setup HTTPS configuration
    • Install the Akamas CLI
      • Setup the Akamas CLI
      • Verify the Akamas CLI
      • Initialize Akamas CLI
      • Change CLI configuration
    • Verify the Akamas Server
    • Install the Akamas license
    • Manage anonymous data collection
    • Install an Akamas Workstation
    • Troubleshoot install issues
    • Manage the Akamas Server
      • Akamas logs
      • Audit logs
      • Install upgrades and patches
      • Monitor the Akamas Server
      • Backup & Recover of the Akamas Server
  • Using Akamas
    • General optimization process and methodology
    • Preparing optimization studies
      • Modeling systems
      • Modeling components
        • Creating custom optimization packs
        • Managing optimization packs
      • Creating telemetry instances
      • Creating automation workflows
        • Creating workflows for offline studies
        • Performing load testing to support optimization activities
        • Creating workflows for live optimizations
      • Creating optimization studies
        • Defining optimization goal & constraints
        • Defining windowing policies
        • Defining KPIs
        • Defining parameters & metrics
        • Defining workloads
        • Defining optimization steps
        • Setting safety policies
    • Running optimization studies
      • Before running optimization studies
      • Analyzing results of offline optimization studies
        • Optimization Insights
      • Analyzing results of live optimization studies
      • Before applying optimization results
    • Guidelines for choosing optimization parameters
      • Guidelines for JVM (OpenJ9)
      • Guidelines for JVM layer (OpenJDK)
      • Guidelines for Oracle Database
      • Guidelines for PostgreSQL
    • Guidelines for defining optimization studies
      • Optimizing Linux
      • Optimizing Java OpenJDK
      • Optimizing OpenJ9
      • Optimizing Web Applications
      • Optimizing Kubernetes
      • Optimizing Spark
      • Optimizing Oracle Database
      • Optimizing MongoDB
      • Optimizing MySQL Database
      • Optimizing PostgreSQL
  • Integrating Akamas
    • Integrating Telemetry Providers
      • CSV provider
        • Install CSV provider
        • Create CSV provider instances
      • Dynatrace provider
        • Install Dynatrace provider
        • Create Dynatrace provider instances
      • Prometheus provider
        • Install Prometheus provider
        • Create Prometheus provider instances
        • CloudWatch Exporter
        • OracleDB Exporter
      • Spark History Server provider
        • Install Spark History Server provider
        • Create Spark History Server provider instances
      • NeoLoadWeb provider
        • Setup NeoLoadWeb telemetry provider
        • Create NeoLoadWeb provider instances
      • LoadRunner Professional provider
        • Install LoadRunner Professional provider
        • Create LoadRunner Professional provider instances
      • LoadRunner Enterprise provider
        • Install LoadRunner Enterprise provider
        • Create LoadRunner Enterprise provider instances
      • AWS provider
        • Install AWS provider
        • Create AWS provider instances
    • Integrating Configuration Management
    • Integrating Value Stream Delivery
    • Integrating Load Testing
      • Integrating NeoLoad
      • Integrating Load Runner Professional
      • Integrating LoadRunner Enterprise
  • Akamas Reference
    • Glossary
      • System
      • Component
      • Metric
      • Parameter
      • Component Type
      • Workflow
      • Telemetry Provider
      • Telemetry Instance
      • Optimization Pack
      • Goals & Constraints
      • KPI
      • Optimization Study
      • Offline Optimization Study
      • Live Optimization Study
      • Workspace
    • Construct templates
      • System template
      • Component template
      • Parameter template
      • Metric template
      • Component Types template
      • Telemetry Provider template
      • Telemetry Instance template
      • Workflows template
      • Study template
        • Goal & Constraints
        • Windowing policy
          • Trim windowing
          • Stability windowing
        • Parameter selection
        • Metric selection
        • Workload selection
        • KPIs
        • Steps
          • Baseline step
          • Bootstrap step
          • Preset step
          • Optimize step
        • Parameter rendering
    • Workflow Operators
      • General operator arguments
      • Executor Operator
      • FileConfigurator Operator
      • LinuxConfigurator Operator
      • WindowsExecutor Operator
      • WindowsFileConfigurator Operator
      • Sleep Operator
      • OracleExecutor Operator
      • OracleConfigurator Operator
      • SparkSSHSubmit Operator
      • SparkSubmit Operator
      • SparkLivy Operator
      • NeoLoadWeb Operator
      • LoadRunner Operator
      • LoadRunnerEnteprise Operator
    • Telemetry metric mapping
      • Dynatrace metrics mapping
      • Prometheus metrics mapping
      • NeoLoadWeb metrics mapping
      • Spark History Server metrics mapping
      • LoadRunner metrics mapping
    • Optimization Packs
      • Linux optimization pack
        • Amazon Linux
        • Amazon Linux 2
        • Amazon Linux 2022
        • CentOS 7
        • CentOS 8
        • RHEL 7
        • RHEL 8
        • Ubuntu 16.04
        • Ubuntu 18.04
        • Ubuntu 20.04
      • DotNet optimization pack
        • DotNet Core 3.1
      • Java-OpenJDK optimization pack
        • Java OpenJDK 8
        • Java OpenJDK 11
      • OpenJ9 optimization pack
        • IBM J9 VM 6
        • IBM J9 VM 8
        • Eclipse Open J9 11
      • NodeJS optimization pack
        • NodeJS
      • GO optimization pack
        • GO 1
      • Web Application optimization pack
        • Web Application
      • Docker optimization pack
        • Container
      • Kubernetes optimization pack
        • Kubernetes Pod
        • Kubernetes Container
        • Kubernetes Workload
        • Kubernetes Namespace
        • Kubernetes Cluster
      • WebSphere optimization pack
        • WebSphere 8.5
        • WebSphere Liberty ND
      • AWS optimization pack
        • EC2
        • Lambda
      • PostgreSQL optimization pack
        • PostgreSQL 11
        • PostgreSQL 12
      • Cassandra optimization pack
        • Cassandra
      • MySQL Database optimization pack
        • MySQL 8.0
      • Oracle Database optimization pack
        • Oracle Database 12c
        • Oracle Database 18c
        • Oracle Database 19c
        • RDS Oracle Database 11g
        • RDS Oracle Database 12c
      • MongoDB optimization pack
        • MongoDB 4
        • MongoDB 5
      • Elasticsearch optimization pack
        • Elasticsearch 6
      • Spark optimization pack
        • Spark Application 2.2.0
        • Spark Application 2.3.0
        • Spark Application 2.4.0
    • Command Line commands
      • Administration commands
      • User and Workspace management commands
      • Authentication commands
      • Resource management commands
      • Optimizer options commands
  • Knowledge Base
    • Setting up a Konakart environment for testing Akamas
    • Modeling a sample Java-based e-commerce application (Konakart)
    • Optimizing a web application
    • Optimizing a sample Java OpenJ9 application
    • Optimizing a sample Java OpenJDK application
    • Optimizing a sample Linux system
    • Optimizing a MongoDB server instance
    • Optimizing a Kubernetes application
    • Leveraging Ansible to automate AWS instance management
    • Guidelines for optimizing AWS EC2 instances
    • Optimizing a sample application running on AWS
    • Optimizing a Spark application
    • Optimizing an Oracle Database server instance
    • Optimizing an Oracle Database for an e-commerce service
    • Guidelines for optimizing Oracle RDS
    • Optimizing a MySQL server database running Sysbench
    • Optimizing a MySQL server database running OLTPBench
    • Optimizing a live K8s deployment
    • Optimizing a live full-stack deployment (K8s + JVM)
  • Akamas Free Trial
Powered by GitBook
On this page
  • Linux
  • JVM
  • Web Application
  • Kubernetes Container and Docker Container
  • Kubernetes Pod

Was this helpful?

Export as PDF
  1. Akamas Reference
  2. Telemetry metric mapping

Dynatrace metrics mapping

This page describes the mapping between metrics provided by Dynatrace to Akamas metrics for each supported component type.

Component Type
Notes

Linux

Component metric
Labels
Static labels
Dynatrace metric
Scale

cpu_load_avg

builtin:host.cpu.load

cpu_num

N/A

cpu_util

builtin:host.cpu.usage

0.01

cpu_util_details

mode:

  • idle

  • user

  • system

  • iowait

  • builtin:host.cpu.idle (mode=idle)

  • builtin:host.cpu.system (mode=system)

  • builtin:host.cpu.user (mode=user)

  • builtin:host.cpu.iowait (mode=iowait)

0.01

mem_util

N/A

mem_util_nocache

builtin:host.mem.usage

0.01

mem_util_details

N/A

mem_used

N/A

mem_used_nocache

builtin:host.mem.used

mem_total

N/A

mem_fault

builtin:host.mem.avail.pfps

mem_fault_minor

N/A

mem_fault_major

N/A

mem_swapins

N/A

mem_swapouts

N/A

disk_swap_util

N/A

disk_swap_used

N/A

filesystem_util

  • Disk

builtin:host.disk.usedPct

filesystem_used

N/A

filesystem_size

N/A

disk_util_details

  • Disk

builtin:host.disk.free

0.01

disk_iops_writes

N/A

disk_iops_reads

N/A

disk_iops

N/A

disk_iops_details

N/A

disk_response_time_worst

N/A

disk_response_time

N/A

disk_io_inflight_details

N/A

0.01

disk_write_bytes

N/A

disk_read_bytes

N/A

disk_read_write_bytes

N/A

disk_write_bytes_details

  • Disk

builtin:host.disk.bytesWritten

disk_read_bytes_details

  • Disk

builtin:host.disk.bytesRead

disk_response_time_details

  • Disk

builtin:host.disk.readTime

0.001

proc_blocked

N/A

os_context_switch

N/A

network_tcp_retrans

N/A

network_in_bytes_details

  • Network interface

builtin:host.net.nic.bytesRx

network_out_bytes_details

  • Network interface

builtin:host.net.nic.bytesTx

JVM

Component metric
Labels
Dynatrace metric
Scale
Aggregate multiple Dynatrace entities
Multiple entitites aggregation

jvm_gc_count

builtin:tech.jvm.memory.pool.collectionCount:merge(poolname,gcname):sum

1/60

Yes

avg

jvm_gc_time

builtin:tech.jvm.memory.gc.suspensionTime

0.01

Yes

avg

jvm_heap_size

builtin:tech.jvm.memory.runtime.max

Yes

avg

jvm_heap_committed

Yes

avg

jvm_heap_used

Yes

avg

jvm_off_heap_used

Yes

avg

jvm_heap_old_gen_size

Yes

avg

jvm_heap_old_gen_used

Yes

avg

jvm_heap_young_gen_size

Yes

avg

jvm_heap_young_gen_used

Yes

avg

jvm_threads_current

builtin:tech.jvm.threads.count

Yes

avg

Web Application

Component metric
Dynatrace metric
Scale

transactions_response_time

N/A

pages_response_time

N/A

requests_response_time

builtin:service.response.time

0.000001

transactions_response_time_min

N/A

pages_response_time_min

N/A

requests_response_time_min

builtin:service.response.time:min

0.000001

transactions_response_time_max

N/A

pages_response_time_max

N/A

requests_response_time_max

builtin:service.response.time:max

0.000001

transactions_throughput

N/A

pages_throughput

N/A

requests_throughput

builtin:service.errors.total.successCount

1/60

pages_error_rate

N/A

requests_error_rate

N/A

transactions_error_throughput

N/A

pages_error_throughput

N/A

requests_error_throughput

N/A

users

N/A

Kubernetes Container and Docker Container

Component Metric
Dynatrace Metric
Scale
Aggregate multiple Dynatrace entities
Multiple entitites aggregation

container_cpu_limit

builtin:containers.cpu.limit

Yes

avg

container_cpu_util

builtin:containers.cpu.usagePercent

0.01

Yes

avg

container_cpu_throttled_millicores

builtin:containers.cpu.throttledMilliCores

Yes

avg

container_cpu_throttle_time

builtin:containers.cpu.throttledTime

1 / 10^9 / 60

Yes

avg

container_cpu_used

builtin:containers.cpu.usageMilliCores

Yes

avg

container_cpu_used_max

builtin:containers.cpu.usageMilliCores:max

Yes

max

container_memory_limit

builtin:containers.memory.limitBytes

Yes

avg

container_memory_used

builtin:containers.memory.residentSetBytes

Yes

avg

container_memory_used_max

builtin:containers.memory.residentSetBytes:max

Yes

max

container_memory_util

builtin:containers.memory.usagePercent

0.01

Yes

avg

container_oom_kills_count

builtin:containers.memory.outOfMemoryKills

1/60

Yes

avg

Kubernetes Pod

Component Metric
Dynatrace Metric
Scale
Aggregate multiple Dynatrace entities
Multiple entitites aggregation

k8s_pod_cpu_limit

builtin:cloud.kubernetes.pod.cpuLimits

Yes

avg

k8s_pod_cpu_request

builtin:cloud.kubernetes.pod.cpuRequests

Yes

avg

k8s_pod_memory_limit

builtin:cloud.kubernetes.pod.memoryLimits

Yes

avg

k8s_pod_memory_request

builtin:cloud.kubernetes.pod.memoryRequests

Yes

avg

k8s_pod_container_restarts

builtin:cloud.kubernetes.pod.containerRestarts

Yes

avg

k8s_workload_desired_pods

builtin:cloud.kubernetes.workload.desiredPods

Yes

sum

Last updated 2 years ago

Was this helpful?

builtin:tech.jvm.memory.pool.committed:filter(ne(poolname,Metaspace),ne(poolname,Code Cache),ne(poolname,CodeHeap 'non-nmethods'),ne(poolname,CodeHeap 'non-profiled nmethods'),ne(poolname,CodeHeap 'profiled nmethods'),ne(poolname,Compressed Class Space),ne(poolname,class storage),ne(poolname,miscellaneous non-heap storage),ne(poolname,JIT code cache),ne(poolname,JIT data cache)):merge(poolname):sum
builtin:tech.jvm.memory.pool.used:filter(ne(poolname,Metaspace),ne(poolname,Code Cache),ne(poolname,CodeHeap 'non-nmethods'),ne(poolname,CodeHeap 'non-profiled nmethods'),ne(poolname,CodeHeap 'profiled nmethods'),ne(poolname,Compressed Class Space),ne(poolname,class storage),ne(poolname,miscellaneous non-heap storage),ne(poolname,JIT code cache),ne(poolname,JIT data cache)):merge(poolname):sum
builtin:tech.jvm.memory.pool.used:filter(or(eq(poolname,Metaspace),eq(poolname,Code Cache),eq(poolname,CodeHeap 'non-nmethods'),eq(poolname,CodeHeap 'non-profiled nmethods'),eq(poolname,CodeHeap 'profiled nmethods'),eq(poolname,Compressed Class Space),eq(poolname,class storage),eq(poolname,miscellaneous non-heap storage),eq(poolname,JIT code cache),eq(poolname,JIT data cache))):merge(poolname):sum
builtin:tech.jvm.memory.pool.max:filter(or(eq(poolname,CMS Old Gen),eq(poolname,G1 Old Gen),eq(poolname,PS Old Gen),eq(poolname,Tenured Gen),eq(poolname,tenured-LOA),eq(poolname,tenured-SOA))):merge(poolname):sum
builtin:tech.jvm.memory.pool.used:filter(or(eq(poolname,CMS Old Gen),eq(poolname,G1 Old Gen),eq(poolname,PS Old Gen),eq(poolname,Tenured Gen),eq(poolname,tenured-LOA),eq(poolname,tenured-SOA))):merge(poolname):sum
builtin:tech.jvm.memory.pool.max:filter(or(eq(poolname,Eden Space),eq(poolname,G1 Survivor Space),eq(poolname,Par Eden Space),eq(poolname,Par Survivor Space),eq(poolname,PS Eden Space),eq(poolname,PS Survivor Space),eq(poolname,nursery-survivor),eq(poolname,nursery-allocate))):merge(poolname):sum
 builtin:tech.jvm.memory.pool.used:filter(or(eq(poolname,Eden Space),eq(poolname,G1 Survivor Space),eq(poolname,Par Eden Space),eq(poolname,Par Survivor Space),eq(poolname,PS Eden Space),eq(poolname,PS Survivor Space),eq(poolname,nursery-survivor),eq(poolname,nursery-allocate))):merge(poolname):sum
Linux
JVM
Web Application
Kubernetes Container
Kubernetes Pod
Docker Container