Akamas Docs
3.1.2
3.1.2
  • How to use this documentation
  • Getting started with Akamas
    • Introduction to Akamas
    • Licensing
    • Deployment
      • Cloud Hosting
    • Security
    • Maintenance & Support (M&S) Services
      • Customer Support Services
      • Support levels for Customer Support Services
      • Support levels for software versions
      • Support levels with Akamas 3.1
  • Installing Akamas
    • Akamas Architecture
    • Prerequisites
      • Hardware Requirements
      • Software Requirements
      • Network requirements
    • Install Akamas dependencies
    • Install the Akamas Server
      • Online installation mode
        • Online installation behind a Proxy server
      • Offline installation mode
      • Changing UI Ports
      • Setup HTTPS configuration
    • Install the Akamas CLI
      • Setup the Akamas CLI
      • Verify the Akamas CLI
      • Initialize Akamas CLI
      • Change CLI configuration
    • Verify the Akamas Server
    • Install the Akamas license
    • Manage anonymous data collection
    • Install an Akamas Workstation
    • Troubleshoot install issues
    • Manage the Akamas Server
      • Akamas logs
      • Audit logs
      • Install upgrades and patches
      • Monitor the Akamas Server
      • Backup & Recover of the Akamas Server
  • Using Akamas
    • General optimization process and methodology
    • Preparing optimization studies
      • Modeling systems
      • Modeling components
        • Creating custom optimization packs
        • Managing optimization packs
      • Creating telemetry instances
      • Creating automation workflows
        • Creating workflows for offline studies
        • Performing load testing to support optimization activities
        • Creating workflows for live optimizations
      • Creating optimization studies
        • Defining optimization goal & constraints
        • Defining windowing policies
        • Defining KPIs
        • Defining parameters & metrics
        • Defining workloads
        • Defining optimization steps
        • Setting safety policies
    • Running optimization studies
      • Before running optimization studies
      • Analyzing results of offline optimization studies
        • Optimization Insights
      • Analyzing results of live optimization studies
      • Before applying optimization results
    • Guidelines for choosing optimization parameters
      • Guidelines for JVM (OpenJ9)
      • Guidelines for JVM layer (OpenJDK)
      • Guidelines for Oracle Database
      • Guidelines for PostgreSQL
    • Guidelines for defining optimization studies
      • Optimizing Linux
      • Optimizing Java OpenJDK
      • Optimizing OpenJ9
      • Optimizing Web Applications
      • Optimizing Kubernetes
      • Optimizing Spark
      • Optimizing Oracle Database
      • Optimizing MongoDB
      • Optimizing MySQL Database
      • Optimizing PostgreSQL
  • Integrating Akamas
    • Integrating Telemetry Providers
      • CSV provider
        • Install CSV provider
        • Create CSV provider instances
      • Dynatrace provider
        • Install Dynatrace provider
        • Create Dynatrace provider instances
      • Prometheus provider
        • Install Prometheus provider
        • Create Prometheus provider instances
        • CloudWatch Exporter
        • OracleDB Exporter
      • Spark History Server provider
        • Install Spark History Server provider
        • Create Spark History Server provider instances
      • NeoLoadWeb provider
        • Setup NeoLoadWeb telemetry provider
        • Create NeoLoadWeb provider instances
      • LoadRunner Professional provider
        • Install LoadRunner Professional provider
        • Create LoadRunner Professional provider instances
      • LoadRunner Enterprise provider
        • Install LoadRunner Enterprise provider
        • Create LoadRunner Enterprise provider instances
      • AWS provider
        • Install AWS provider
        • Create AWS provider instances
    • Integrating Configuration Management
    • Integrating Value Stream Delivery
    • Integrating Load Testing
      • Integrating NeoLoad
      • Integrating Load Runner Professional
      • Integrating LoadRunner Enterprise
  • Akamas Reference
    • Glossary
      • System
      • Component
      • Metric
      • Parameter
      • Component Type
      • Workflow
      • Telemetry Provider
      • Telemetry Instance
      • Optimization Pack
      • Goals & Constraints
      • KPI
      • Optimization Study
      • Offline Optimization Study
      • Live Optimization Study
      • Workspace
    • Construct templates
      • System template
      • Component template
      • Parameter template
      • Metric template
      • Component Types template
      • Telemetry Provider template
      • Telemetry Instance template
      • Workflows template
      • Study template
        • Goal & Constraints
        • Windowing policy
          • Trim windowing
          • Stability windowing
        • Parameter selection
        • Metric selection
        • Workload selection
        • KPIs
        • Steps
          • Baseline step
          • Bootstrap step
          • Preset step
          • Optimize step
        • Parameter rendering
    • Workflow Operators
      • General operator arguments
      • Executor Operator
      • FileConfigurator Operator
      • LinuxConfigurator Operator
      • WindowsExecutor Operator
      • WindowsFileConfigurator Operator
      • Sleep Operator
      • OracleExecutor Operator
      • OracleConfigurator Operator
      • SparkSSHSubmit Operator
      • SparkSubmit Operator
      • SparkLivy Operator
      • NeoLoadWeb Operator
      • LoadRunner Operator
      • LoadRunnerEnteprise Operator
    • Telemetry metric mapping
      • Dynatrace metrics mapping
      • Prometheus metrics mapping
      • NeoLoadWeb metrics mapping
      • Spark History Server metrics mapping
      • LoadRunner metrics mapping
    • Optimization Packs
      • Linux optimization pack
        • Amazon Linux
        • Amazon Linux 2
        • Amazon Linux 2022
        • CentOS 7
        • CentOS 8
        • RHEL 7
        • RHEL 8
        • Ubuntu 16.04
        • Ubuntu 18.04
        • Ubuntu 20.04
      • DotNet optimization pack
        • DotNet Core 3.1
      • Java-OpenJDK optimization pack
        • Java OpenJDK 8
        • Java OpenJDK 11
      • OpenJ9 optimization pack
        • IBM J9 VM 6
        • IBM J9 VM 8
        • Eclipse Open J9 11
      • NodeJS optimization pack
        • NodeJS
      • GO optimization pack
        • GO 1
      • Web Application optimization pack
        • Web Application
      • Docker optimization pack
        • Container
      • Kubernetes optimization pack
        • Kubernetes Pod
        • Kubernetes Container
        • Kubernetes Workload
        • Kubernetes Namespace
        • Kubernetes Cluster
      • WebSphere optimization pack
        • WebSphere 8.5
        • WebSphere Liberty ND
      • AWS optimization pack
        • EC2
        • Lambda
      • PostgreSQL optimization pack
        • PostgreSQL 11
        • PostgreSQL 12
      • Cassandra optimization pack
        • Cassandra
      • MySQL Database optimization pack
        • MySQL 8.0
      • Oracle Database optimization pack
        • Oracle Database 12c
        • Oracle Database 18c
        • Oracle Database 19c
        • RDS Oracle Database 11g
        • RDS Oracle Database 12c
      • MongoDB optimization pack
        • MongoDB 4
        • MongoDB 5
      • Elasticsearch optimization pack
        • Elasticsearch 6
      • Spark optimization pack
        • Spark Application 2.2.0
        • Spark Application 2.3.0
        • Spark Application 2.4.0
    • Command Line commands
      • Administration commands
      • User and Workspace management commands
      • Authentication commands
      • Resource management commands
      • Optimizer options commands
  • Knowledge Base
    • Setting up a Konakart environment for testing Akamas
    • Modeling a sample Java-based e-commerce application (Konakart)
    • Optimizing a web application
    • Optimizing a sample Java OpenJ9 application
    • Optimizing a sample Java OpenJDK application
    • Optimizing a sample Linux system
    • Optimizing a MongoDB server instance
    • Optimizing a Kubernetes application
    • Leveraging Ansible to automate AWS instance management
    • Guidelines for optimizing AWS EC2 instances
    • Optimizing a sample application running on AWS
    • Optimizing a Spark application
    • Optimizing an Oracle Database server instance
    • Optimizing an Oracle Database for an e-commerce service
    • Guidelines for optimizing Oracle RDS
    • Optimizing a MySQL server database running Sysbench
    • Optimizing a MySQL server database running OLTPBench
    • Optimizing a live K8s deployment
    • Optimizing a live full-stack deployment (K8s + JVM)
  • Akamas Free Trial
Powered by GitBook
On this page
  • Supported versions
  • Supported component types
  • Prerequisites
  • Permissions
  • Component configuration
  • Map by id
  • Map by name
  • Map by tags
  • Improve component mapping with type
  • Kubernetes specific properties
  • Container
  • Pod

Was this helpful?

Export as PDF
  1. Integrating Akamas
  2. Integrating Telemetry Providers

Dynatrace provider

Last updated 1 year ago

Was this helpful?

Supported versions

  • Dynatrace SaaS or Managed version 1.187 or later

    • Versions < 2.0.0 are compatible with Akamas until version 1.8.0

    • Versions >= 2.0.0 are compatible with Akamas from version 1.9.0

Supported component types

  • Linux

    • Ubuntu-16.04, Rhel-7.6

  • JVM

    • java-openjdk-8, java-openjdk-11

    • java-ibm-j9vm-6, java-ibm-j9vm-8, java-eclipse-openj9-11

  • Web Application

  • Kubernetes and Docker

Refer to to see how component-types metrics are extracted by this provider.

Prerequisites

  • a valid Dynatrace license

  • Dynatrace OneAgent installed on the servers where the Dynatrace entities to be monitored are running

  • Connectivity between:

    • Akamas server and Dynatrace server over port 443 (if Dynatrace is deployed on-premises)

    • Akamas server and internet (over https) if Dynatrace is managed as a SaaS platform

  • URL (+ port if it is not the default one) of your Dynatrace server (SaaS or Managed)

  • API token from your Dynatrace server (Saas or Managed) with the rights to "Access problems and event feed, metrics, and topology" - see more details

  • A Dynatrace user belonging to the group "Monitoring viewer", which allows access to the environment in read-only mode, without being able to change settings, download or install OneAgent

Permissions

The Dynatrace provider needs a Dynatrace API token with the following privileges:

  • metrics.read (Read entities)

  • entities.read (Read metrics)

  • DataExport (Access problem and event feed, metrics, and topology)

  • DataImport (Data ingest, e.g.: metrics and events)

  • ReadSyntheticData (Read synthetic monitors, locations, and nodes)

Component configuration

To map metrics collected from Dynatrace to Akamas component, the Dynatrace provider looks up some properties in the components of a system grouped under dynatrace.

These properties give you access to different strategies to map Akamas components onto Dynatrace entities:

  • Map by id

  • Map by name

  • Map by tags

Map by id

You can map a component to a Dynatrace entity by leveraging the unique id of the entity, which you should put under the id property in the component:

name: MyComponent
properties:
 dynatrace:
  id: HOST-12345YUAB1

You can find the id of a Dynatrace entity by looking at the URL of a Dynatrace dashboard relative to the entity. Watch out that the "host" key is valid only for Linux components, other components (e.g. the JVM) require to drill down into the host entities to get the PROCESS_GROUP_INSTANCE or PROCESS_GROUP id

Map by name

You can map a component to a Dynatrace entity by leveraging the entity’s display name which you should put under the name property in the component definition:

name: MyComponent
properties:
 dynatrace:
  name: host-1

Map by tags

You can map a component to a Dynatrace entity by leveraging Dynatrace tags that match the entity, tags which you should put under the tags property in the component definition. If multiple tags are specified all instances matching any of the specified tags will be selected.

name: MyComponent
properties:
 dynatrace:
  tags:
     environment: test
     [AWS]dynatrace-monitored: true

In the case of a key-only tag, the example above would be:

name: MyComponent
properties:
 dynatrace:
  tags:
     environment: test
     myKeyOnlyTag: ""

Improve component mapping with type

You can improve the matching of components with Dynatrace by adding a type property in the component definition, this property will help the Provider match only those Dynatrace entities of the given type.

name: MyComponent
properties:
 dynatrace:
  type: service     # here the type helps the mapping by tags by filtering down entities that are only services
  tags:
     environment: test
     "[AWS]dynatrace-monitored": true

The type of an entity can be retrieved from the URL of the entity’s dashboard

Available entities types can be retrieved, from your Dynatrace instance, with the following command:

curl 'https://<Your Dynatrace host>/api/v2/entityTypes/?pageSize=500' --header 'Authorization: Api-Token <API-TOKEN>'

Kubernetes specific properties

A set of Kubernetes-specific properties can be used to allow users to retrieve data related to the monitored Kubernetes clusters.

Please note, that the property type is required to retrieve Kubernetes entities. Currently, the supported types in Dynatrace are the following

Dynatrace type
Kubernetes type

CONTAINER_GROUP_INSTANCE

Docker container

CLOUD_APPLICATION_INSTANCE

Pod

CLOUD_APPLICATION

Workload

CLOUD_APPLICATION_NAMESPACE

Namespace

KUBERNETES_CLUSTER

Cluster

The following Kubernetes object can be retrieved from Dynatrace.

Container

The following properties are supported for containers:

Akamas
Dynatrace
Location
Notes

namespace

Kubernetes namespace

Container dashboard

-

containerName

Kubernetes container name

Container dashboard

-

basePodName

Kubernetes base pod name

Container dashboard

-

Example

dynatrace:
  type: CONTAINER_GROUP_INSTANCE
  kubernetes:
    namespace: boutique
    containerName: server
    basePodName: ak-frontend-*

Pod

The following properties are supported for pods

Akamas
Dynatrace
Location
Notes

state

State

Pod dashboard

-

labels

Labels

Pod dashboard

Labels are specified as key-value in Akamas configuration.

In Dynatrace’s dashboard key and value are separated with a column (:)

Example

dynatrace:
  type: CLOUD_APPLICATION_INTSTANCe
  namePrefix: ak-frontend-
  kubernetes:
    state: RUNNING
    labels:
      app: ak-frontend
      product: hipstershop

To generate an API Token for your Dynatrace installation you can follow .

Dynatrace provider metrics mapping
here
these steps