Akamas Docs
3.1.2
3.1.2
  • How to use this documentation
  • Getting started with Akamas
    • Introduction to Akamas
    • Licensing
    • Deployment
      • Cloud Hosting
    • Security
    • Maintenance & Support (M&S) Services
      • Customer Support Services
      • Support levels for Customer Support Services
      • Support levels for software versions
      • Support levels with Akamas 3.1
  • Installing Akamas
    • Akamas Architecture
    • Prerequisites
      • Hardware Requirements
      • Software Requirements
      • Network requirements
    • Install Akamas dependencies
    • Install the Akamas Server
      • Online installation mode
        • Online installation behind a Proxy server
      • Offline installation mode
      • Changing UI Ports
      • Setup HTTPS configuration
    • Install the Akamas CLI
      • Setup the Akamas CLI
      • Verify the Akamas CLI
      • Initialize Akamas CLI
      • Change CLI configuration
    • Verify the Akamas Server
    • Install the Akamas license
    • Manage anonymous data collection
    • Install an Akamas Workstation
    • Troubleshoot install issues
    • Manage the Akamas Server
      • Akamas logs
      • Audit logs
      • Install upgrades and patches
      • Monitor the Akamas Server
      • Backup & Recover of the Akamas Server
  • Using Akamas
    • General optimization process and methodology
    • Preparing optimization studies
      • Modeling systems
      • Modeling components
        • Creating custom optimization packs
        • Managing optimization packs
      • Creating telemetry instances
      • Creating automation workflows
        • Creating workflows for offline studies
        • Performing load testing to support optimization activities
        • Creating workflows for live optimizations
      • Creating optimization studies
        • Defining optimization goal & constraints
        • Defining windowing policies
        • Defining KPIs
        • Defining parameters & metrics
        • Defining workloads
        • Defining optimization steps
        • Setting safety policies
    • Running optimization studies
      • Before running optimization studies
      • Analyzing results of offline optimization studies
        • Optimization Insights
      • Analyzing results of live optimization studies
      • Before applying optimization results
    • Guidelines for choosing optimization parameters
      • Guidelines for JVM (OpenJ9)
      • Guidelines for JVM layer (OpenJDK)
      • Guidelines for Oracle Database
      • Guidelines for PostgreSQL
    • Guidelines for defining optimization studies
      • Optimizing Linux
      • Optimizing Java OpenJDK
      • Optimizing OpenJ9
      • Optimizing Web Applications
      • Optimizing Kubernetes
      • Optimizing Spark
      • Optimizing Oracle Database
      • Optimizing MongoDB
      • Optimizing MySQL Database
      • Optimizing PostgreSQL
  • Integrating Akamas
    • Integrating Telemetry Providers
      • CSV provider
        • Install CSV provider
        • Create CSV provider instances
      • Dynatrace provider
        • Install Dynatrace provider
        • Create Dynatrace provider instances
      • Prometheus provider
        • Install Prometheus provider
        • Create Prometheus provider instances
        • CloudWatch Exporter
        • OracleDB Exporter
      • Spark History Server provider
        • Install Spark History Server provider
        • Create Spark History Server provider instances
      • NeoLoadWeb provider
        • Setup NeoLoadWeb telemetry provider
        • Create NeoLoadWeb provider instances
      • LoadRunner Professional provider
        • Install LoadRunner Professional provider
        • Create LoadRunner Professional provider instances
      • LoadRunner Enterprise provider
        • Install LoadRunner Enterprise provider
        • Create LoadRunner Enterprise provider instances
      • AWS provider
        • Install AWS provider
        • Create AWS provider instances
    • Integrating Configuration Management
    • Integrating Value Stream Delivery
    • Integrating Load Testing
      • Integrating NeoLoad
      • Integrating Load Runner Professional
      • Integrating LoadRunner Enterprise
  • Akamas Reference
    • Glossary
      • System
      • Component
      • Metric
      • Parameter
      • Component Type
      • Workflow
      • Telemetry Provider
      • Telemetry Instance
      • Optimization Pack
      • Goals & Constraints
      • KPI
      • Optimization Study
      • Offline Optimization Study
      • Live Optimization Study
      • Workspace
    • Construct templates
      • System template
      • Component template
      • Parameter template
      • Metric template
      • Component Types template
      • Telemetry Provider template
      • Telemetry Instance template
      • Workflows template
      • Study template
        • Goal & Constraints
        • Windowing policy
          • Trim windowing
          • Stability windowing
        • Parameter selection
        • Metric selection
        • Workload selection
        • KPIs
        • Steps
          • Baseline step
          • Bootstrap step
          • Preset step
          • Optimize step
        • Parameter rendering
    • Workflow Operators
      • General operator arguments
      • Executor Operator
      • FileConfigurator Operator
      • LinuxConfigurator Operator
      • WindowsExecutor Operator
      • WindowsFileConfigurator Operator
      • Sleep Operator
      • OracleExecutor Operator
      • OracleConfigurator Operator
      • SparkSSHSubmit Operator
      • SparkSubmit Operator
      • SparkLivy Operator
      • NeoLoadWeb Operator
      • LoadRunner Operator
      • LoadRunnerEnteprise Operator
    • Telemetry metric mapping
      • Dynatrace metrics mapping
      • Prometheus metrics mapping
      • NeoLoadWeb metrics mapping
      • Spark History Server metrics mapping
      • LoadRunner metrics mapping
    • Optimization Packs
      • Linux optimization pack
        • Amazon Linux
        • Amazon Linux 2
        • Amazon Linux 2022
        • CentOS 7
        • CentOS 8
        • RHEL 7
        • RHEL 8
        • Ubuntu 16.04
        • Ubuntu 18.04
        • Ubuntu 20.04
      • DotNet optimization pack
        • DotNet Core 3.1
      • Java-OpenJDK optimization pack
        • Java OpenJDK 8
        • Java OpenJDK 11
      • OpenJ9 optimization pack
        • IBM J9 VM 6
        • IBM J9 VM 8
        • Eclipse Open J9 11
      • NodeJS optimization pack
        • NodeJS
      • GO optimization pack
        • GO 1
      • Web Application optimization pack
        • Web Application
      • Docker optimization pack
        • Container
      • Kubernetes optimization pack
        • Kubernetes Pod
        • Kubernetes Container
        • Kubernetes Workload
        • Kubernetes Namespace
        • Kubernetes Cluster
      • WebSphere optimization pack
        • WebSphere 8.5
        • WebSphere Liberty ND
      • AWS optimization pack
        • EC2
        • Lambda
      • PostgreSQL optimization pack
        • PostgreSQL 11
        • PostgreSQL 12
      • Cassandra optimization pack
        • Cassandra
      • MySQL Database optimization pack
        • MySQL 8.0
      • Oracle Database optimization pack
        • Oracle Database 12c
        • Oracle Database 18c
        • Oracle Database 19c
        • RDS Oracle Database 11g
        • RDS Oracle Database 12c
      • MongoDB optimization pack
        • MongoDB 4
        • MongoDB 5
      • Elasticsearch optimization pack
        • Elasticsearch 6
      • Spark optimization pack
        • Spark Application 2.2.0
        • Spark Application 2.3.0
        • Spark Application 2.4.0
    • Command Line commands
      • Administration commands
      • User and Workspace management commands
      • Authentication commands
      • Resource management commands
      • Optimizer options commands
  • Knowledge Base
    • Setting up a Konakart environment for testing Akamas
    • Modeling a sample Java-based e-commerce application (Konakart)
    • Optimizing a web application
    • Optimizing a sample Java OpenJ9 application
    • Optimizing a sample Java OpenJDK application
    • Optimizing a sample Linux system
    • Optimizing a MongoDB server instance
    • Optimizing a Kubernetes application
    • Leveraging Ansible to automate AWS instance management
    • Guidelines for optimizing AWS EC2 instances
    • Optimizing a sample application running on AWS
    • Optimizing a Spark application
    • Optimizing an Oracle Database server instance
    • Optimizing an Oracle Database for an e-commerce service
    • Guidelines for optimizing Oracle RDS
    • Optimizing a MySQL server database running Sysbench
    • Optimizing a MySQL server database running OLTPBench
    • Optimizing a live K8s deployment
    • Optimizing a live full-stack deployment (K8s + JVM)
  • Akamas Free Trial
Powered by GitBook
On this page
  • Exploration factor
  • Safety factor

Was this helpful?

Export as PDF
  1. Using Akamas
  2. Preparing optimization studies
  3. Creating optimization studies

Setting safety policies

Last updated 1 year ago

Was this helpful?

While Akamas leverages similar AI methods for both live optimizations and optimization studies, the way these methods are applied is radically different. Indeed, for optimization studies running in pre-production environments, the approach is to explore the configuration space by also accepting potential failed experiments, to identify regions that do not correspond to viable configurations. Of course, this approach cannot be accepted for live optimization running in production environments. For this purpose, Akamas live optimization uses observations of configuration changes combined with the automatic detection of workload contexts and provides several customizable safety policies when recommending configurations to be approved, revisited, and applied.

Akamas provides a few customizable optimizer options (refer to the options described on the page of the reference guide) that should be configured so as to make configurations recommended in live optimization and applied to production environments as safe as possible.

Exploration factor

Akamas provides an optimizer option known as the exploration factor that only allows gradual changes to the parameters. This gradual optimization allows Akamas to observe how these changes impact the system behavior before applying the following gradual changes.

By properly configuring the optimizer, Akamas can gradually explore regions of the configuration space and slowly approach any potentially risky regions, thus avoiding recommending any configurations that may negatively impact the system. Gradual optimization takes into account the maximum recommended change for each parameter. This is defined as a percentage (default is 5%) with respect to the baseline value. For example, in the case of a container whose CPU limit is 1000 millicores, the corresponding maximum allowed change is 50 millicores. It is important to notice that this does not represent an absolute cap, as Akamas also takes into account any good configurations observed. For example, in the event of a traffic peak, Akamas would recommend a good configuration that was observed working fine for a similar workload in the past, even if the change is higher than 5% of the current configuration value.

Notice that this feature would not work for categorical parameters (e.g. JVM GC Type) as their values do not change incrementally. Therefore, when it comes to these parameters, Akamas by default takes a conservative approach of only recommending configurations with categorical parameters taking already observed before values. This still allows some never observed values to be recommended as users are allowed to modify values also for categorical parameters when operating in human-in-the-loop mode. Once Akamas has observed that that specific configuration is working fine, the corresponding value can then be recommended. For example, a user might modify the recommended configuration for GC Type from Serial to Parallel. Once Parallel has been observed as working fine, Akamas would consider it for future recommendations of GC Type, while other values (e.g. G1) would not be considered until verified as safe recommendations.

The exploration factor can be customized for each live optimization individually and changed while live optimizations are running.

Safety factor

Akamas provides an optimizer option known as the safety factor designed to prevent Akamas from selecting configurations (even if slowly approaching them) that may impact the ability to match defined SLOs. For example, when optimizing container CPU limits, lower and lower CPU limits might be recommended, up to the point that the limit becomes too low that the application performance degrades.

Akamas takes into account the magnitude of constraint breaches: a severe breach is considered more negative than a minor breach. For example, in the case of an SLO of 200 ms on response time, a configuration causing a 1 sec response time is assigned a very different penalty than a configuration causing a 210 ms response time. Moreover, Akamas leverages the smart constraint evaluation feature that takes into account if a configuration is causing constraints to approach their corresponding thresholds. For example, in the case of an SLO of 200 ms on response time, a configuration changing response time from 170 ms to 190 ms is considered more problematic than one causing a change from 100 ms to 120 ms. The first one is considered by Akamas as corresponding to a gray area that should not be explored.

The safety factor can be customized for each live optimization individually and changed while live optimizations are running.

Outlier detection

It is also worth mentioning that Akamas also features an outlier detection capability to compensate for production environments typically being noisy and much less stable than staging environments, thus displaying highly fluctuating performance metrics. As a consequence, constraints may fail from time to time, even for perfectly good configurations. This may be due to a variety of causes, such as shared infrastructure on the cloud, slowness of external systems, etc.

Optimize step