Akamas Docs
3.1.2
3.1.2
  • How to use this documentation
  • Getting started with Akamas
    • Introduction to Akamas
    • Licensing
    • Deployment
      • Cloud Hosting
    • Security
    • Maintenance & Support (M&S) Services
      • Customer Support Services
      • Support levels for Customer Support Services
      • Support levels for software versions
      • Support levels with Akamas 3.1
  • Installing Akamas
    • Akamas Architecture
    • Prerequisites
      • Hardware Requirements
      • Software Requirements
      • Network requirements
    • Install Akamas dependencies
    • Install the Akamas Server
      • Online installation mode
        • Online installation behind a Proxy server
      • Offline installation mode
      • Changing UI Ports
      • Setup HTTPS configuration
    • Install the Akamas CLI
      • Setup the Akamas CLI
      • Verify the Akamas CLI
      • Initialize Akamas CLI
      • Change CLI configuration
    • Verify the Akamas Server
    • Install the Akamas license
    • Manage anonymous data collection
    • Install an Akamas Workstation
    • Troubleshoot install issues
    • Manage the Akamas Server
      • Akamas logs
      • Audit logs
      • Install upgrades and patches
      • Monitor the Akamas Server
      • Backup & Recover of the Akamas Server
  • Using Akamas
    • General optimization process and methodology
    • Preparing optimization studies
      • Modeling systems
      • Modeling components
        • Creating custom optimization packs
        • Managing optimization packs
      • Creating telemetry instances
      • Creating automation workflows
        • Creating workflows for offline studies
        • Performing load testing to support optimization activities
        • Creating workflows for live optimizations
      • Creating optimization studies
        • Defining optimization goal & constraints
        • Defining windowing policies
        • Defining KPIs
        • Defining parameters & metrics
        • Defining workloads
        • Defining optimization steps
        • Setting safety policies
    • Running optimization studies
      • Before running optimization studies
      • Analyzing results of offline optimization studies
        • Optimization Insights
      • Analyzing results of live optimization studies
      • Before applying optimization results
    • Guidelines for choosing optimization parameters
      • Guidelines for JVM (OpenJ9)
      • Guidelines for JVM layer (OpenJDK)
      • Guidelines for Oracle Database
      • Guidelines for PostgreSQL
    • Guidelines for defining optimization studies
      • Optimizing Linux
      • Optimizing Java OpenJDK
      • Optimizing OpenJ9
      • Optimizing Web Applications
      • Optimizing Kubernetes
      • Optimizing Spark
      • Optimizing Oracle Database
      • Optimizing MongoDB
      • Optimizing MySQL Database
      • Optimizing PostgreSQL
  • Integrating Akamas
    • Integrating Telemetry Providers
      • CSV provider
        • Install CSV provider
        • Create CSV provider instances
      • Dynatrace provider
        • Install Dynatrace provider
        • Create Dynatrace provider instances
      • Prometheus provider
        • Install Prometheus provider
        • Create Prometheus provider instances
        • CloudWatch Exporter
        • OracleDB Exporter
      • Spark History Server provider
        • Install Spark History Server provider
        • Create Spark History Server provider instances
      • NeoLoadWeb provider
        • Setup NeoLoadWeb telemetry provider
        • Create NeoLoadWeb provider instances
      • LoadRunner Professional provider
        • Install LoadRunner Professional provider
        • Create LoadRunner Professional provider instances
      • LoadRunner Enterprise provider
        • Install LoadRunner Enterprise provider
        • Create LoadRunner Enterprise provider instances
      • AWS provider
        • Install AWS provider
        • Create AWS provider instances
    • Integrating Configuration Management
    • Integrating Value Stream Delivery
    • Integrating Load Testing
      • Integrating NeoLoad
      • Integrating Load Runner Professional
      • Integrating LoadRunner Enterprise
  • Akamas Reference
    • Glossary
      • System
      • Component
      • Metric
      • Parameter
      • Component Type
      • Workflow
      • Telemetry Provider
      • Telemetry Instance
      • Optimization Pack
      • Goals & Constraints
      • KPI
      • Optimization Study
      • Offline Optimization Study
      • Live Optimization Study
      • Workspace
    • Construct templates
      • System template
      • Component template
      • Parameter template
      • Metric template
      • Component Types template
      • Telemetry Provider template
      • Telemetry Instance template
      • Workflows template
      • Study template
        • Goal & Constraints
        • Windowing policy
          • Trim windowing
          • Stability windowing
        • Parameter selection
        • Metric selection
        • Workload selection
        • KPIs
        • Steps
          • Baseline step
          • Bootstrap step
          • Preset step
          • Optimize step
        • Parameter rendering
    • Workflow Operators
      • General operator arguments
      • Executor Operator
      • FileConfigurator Operator
      • LinuxConfigurator Operator
      • WindowsExecutor Operator
      • WindowsFileConfigurator Operator
      • Sleep Operator
      • OracleExecutor Operator
      • OracleConfigurator Operator
      • SparkSSHSubmit Operator
      • SparkSubmit Operator
      • SparkLivy Operator
      • NeoLoadWeb Operator
      • LoadRunner Operator
      • LoadRunnerEnteprise Operator
    • Telemetry metric mapping
      • Dynatrace metrics mapping
      • Prometheus metrics mapping
      • NeoLoadWeb metrics mapping
      • Spark History Server metrics mapping
      • LoadRunner metrics mapping
    • Optimization Packs
      • Linux optimization pack
        • Amazon Linux
        • Amazon Linux 2
        • Amazon Linux 2022
        • CentOS 7
        • CentOS 8
        • RHEL 7
        • RHEL 8
        • Ubuntu 16.04
        • Ubuntu 18.04
        • Ubuntu 20.04
      • DotNet optimization pack
        • DotNet Core 3.1
      • Java-OpenJDK optimization pack
        • Java OpenJDK 8
        • Java OpenJDK 11
      • OpenJ9 optimization pack
        • IBM J9 VM 6
        • IBM J9 VM 8
        • Eclipse Open J9 11
      • NodeJS optimization pack
        • NodeJS
      • GO optimization pack
        • GO 1
      • Web Application optimization pack
        • Web Application
      • Docker optimization pack
        • Container
      • Kubernetes optimization pack
        • Kubernetes Pod
        • Kubernetes Container
        • Kubernetes Workload
        • Kubernetes Namespace
        • Kubernetes Cluster
      • WebSphere optimization pack
        • WebSphere 8.5
        • WebSphere Liberty ND
      • AWS optimization pack
        • EC2
        • Lambda
      • PostgreSQL optimization pack
        • PostgreSQL 11
        • PostgreSQL 12
      • Cassandra optimization pack
        • Cassandra
      • MySQL Database optimization pack
        • MySQL 8.0
      • Oracle Database optimization pack
        • Oracle Database 12c
        • Oracle Database 18c
        • Oracle Database 19c
        • RDS Oracle Database 11g
        • RDS Oracle Database 12c
      • MongoDB optimization pack
        • MongoDB 4
        • MongoDB 5
      • Elasticsearch optimization pack
        • Elasticsearch 6
      • Spark optimization pack
        • Spark Application 2.2.0
        • Spark Application 2.3.0
        • Spark Application 2.4.0
    • Command Line commands
      • Administration commands
      • User and Workspace management commands
      • Authentication commands
      • Resource management commands
      • Optimizer options commands
  • Knowledge Base
    • Setting up a Konakart environment for testing Akamas
    • Modeling a sample Java-based e-commerce application (Konakart)
    • Optimizing a web application
    • Optimizing a sample Java OpenJ9 application
    • Optimizing a sample Java OpenJDK application
    • Optimizing a sample Linux system
    • Optimizing a MongoDB server instance
    • Optimizing a Kubernetes application
    • Leveraging Ansible to automate AWS instance management
    • Guidelines for optimizing AWS EC2 instances
    • Optimizing a sample application running on AWS
    • Optimizing a Spark application
    • Optimizing an Oracle Database server instance
    • Optimizing an Oracle Database for an e-commerce service
    • Guidelines for optimizing Oracle RDS
    • Optimizing a MySQL server database running Sysbench
    • Optimizing a MySQL server database running OLTPBench
    • Optimizing a live K8s deployment
    • Optimizing a live full-stack deployment (K8s + JVM)
  • Akamas Free Trial
Powered by GitBook
On this page

Was this helpful?

Export as PDF
  1. Using Akamas
  2. Preparing optimization studies

Modeling systems

Last updated 1 year ago

Was this helpful?

The very first preparatory step is to model the representing an application or a service that needs to be optimized (also known as the optimization target).

Modeling a system translates into identifying the representing the key technology elements to be included in the optimization. Each component is associated with a set of tunable , i.e. configurable properties that impact the performance, efficiency, or reliability of the system, and with a set of , i.e. measurable properties that are used to evaluate the performance, efficiency, or reliability of the system. Typically, key system components are identified by considering which elements and their parameters need to be tuned.

The following figure shows a system corresponding to a Java-based application, where the Java Virtual Machine (JVM) and Kubernetes containers have been identified as key components.

As shown in this figure, a supported component is the "web application", representing the end user perspective of the modeled system (e.g. response time). As expected, this component type only provides measured metrics and no tunable parameters.

Best Practices

Properly modeling the application or service to be optimized by identifying the components and their parameters to tune is the first important step in the optimization process. Some best practices are described here below.

Modeling only relevant components

When defining the system and its components, it is convenient to focus only on those components that are either providing tunable parameters or key metrics (or KPIs).

Key metrics are those used to:

  • support the analysis of the optimization results, as metrics that are useful to measure the impact of parameter tuning on the performance, efficiency, or reliability of the system. For example, a Linux OS component could be used to assess the impact of the optimization on the system-level metrics such as CPU utilization.

Please note that the metrics used to define the optimization goal and constraints are mandatory as they are used by the Akamas AI engine to validate and score each tested configuration against the goal. Other metrics that are not related to the optimization goal and constraints can be considered optional from a pure optimization implementation perspective.

When defining the optimization study, it is always possible to select which parameters and metrics to consider, thus which components are modeled in the system. Therefore, a system could be modeled by all components that at some point are going to be optimized, even if not used in the current optimization study. However, the recommended approach is to model the system only with components whose parameters (and relevant metrics) are to be tuned by the current study.

Reusing systems whenever possible

Whenever possible, it is recommended to model systems and their components by considering how these could be reused for multiple optimization studies in different contexts.

For example, it might be useful to create a simple system containing only one component (e.g. the JVM) for a first optimization study. A new system might then be created to include other components (e.g. the application server) for more advanced optimization studies.

Modeling systems with horizontal scalability

A typical optimization target is a cluster, i.e. a system made of multiple instances that provide horizontal scalability (e.g. a Kubernetes deployment with several replicas). In this scenario, all the instances are supposed to be identical both from a code and configuration perspective. In this scenario, the recommended approach is to create only one component that represents a generic instance of the cluster. This way, all the instances will be tuned in exactly the same way.

Notice that in order for this approach to work correctly, it is also important to verify that the cluster is correctly monitored by the telemetry providers. Depending on the telemetry technology in use, the clustered system may be presented as either a single entity, with aggregated metrics (e.g. a Kubernetes deployment with the total CPU usage of all the replica pods), or as multiple entities, each corresponding to the different instances in the cluster:

  • in case aggregated metrics are provided by the telemetry provider for the cluster, these metrics can be simply assigned to the component modeling the whole cluster;

  • in case only instance-level metrics are made available by the telemetry provider, telemetry instances need to be configured in Akamas so as to aggregate the metrics of the cluster instances (e.g. averaging CPU utilization, summing memory usage, etc.), depending on how each specific metric is expected to be used in the goal and constraints or in the study results.

Akamas provides several out-of-the-box to support system and component modeling. Moreover, it is also possible to define new component types to model other components (see ).

The section of the reference guide describes the template required to define a system, while the commands for creating a system are listed on the page.

define the optimization , either as metrics that are expected to be improved by the optimization or as metrics representing constraints. For example, a typical goal is to optimize the application throughput. In this case, a Web Application component should include service metrics such as transaction throughput or transaction response time.

Please, also notice that systems (and other Akamas artifacts) can be shared with different teams thanks to the definition of Akamas .

In this scenario, the associated automation needs to be configured to ensure that each configuration is applied to the whole cluster, by propagating the parameter configuration to all of the cluster instances, not just to a single instance represented by the modeled component whose metrics are collected and used to evaluate the overall cluster behavior under that configuration.

component types
Modeling components
System template
Resource Management command
goal and constraints
workspace
workflow
system
components
parameters
metrics
Preparing an optimization: model the system
Figure: Example of a modeled system and its components