Akamas Docs
3.5
3.5
  • Home
  • Getting started
    • Introduction
    • Free Trial
    • Licensing
    • Deployment
      • Cloud Hosting
    • Security
    • Maintenance & Support (M&S) Services
      • Customer Support Services
      • Support levels for Customer Support Services
      • Support levels for software versions
      • Support levels with Akamas
  • Installing
    • Architecture
    • Docker compose installation
      • Prerequisites
        • Hardware Requirements
        • Software Requirements
        • Network requirements
      • Install Akamas dependencies
      • Install the Akamas Server
        • Online installation mode
          • Online installation behind a Proxy server
        • Offline installation mode
        • Changing UI Ports
        • Setup HTTPS configuration
      • Troubleshoot Docker installation issues
    • Kubernetes installation
      • Prerequisites
        • Cluster Requirements
        • Software Requirements
      • Install Akamas
        • Online Installation
        • Offline Installation - Private registry
      • Installing on OpenShift
      • Accessing Akamas
      • Useful commands
    • Install the CLI
      • Setup the CLI
      • Initialize the CLI
      • Change CLI configuration
      • Use a proxy server
    • Verify the installation
    • Installing the toolbox
    • Install the license
    • Manage anonymous data collection
  • Managing Akamas
    • Akamas logs
    • Audit logs
    • Upgrade Akamas
      • Docker compose
      • Kubernetes
    • Monitor Akamas status
    • Backup & Recover of the Akamas Server
    • Users management
      • Accessing Keycloak admin console
      • Configure an external identity provider
        • Azure Active Directory
        • Google
      • Limit users sessions
        • Local users
        • Identity provider users
    • Collecting support information
  • Using
    • System
    • Telemetry
    • Workflow
    • Study
      • Offline Study
      • Live Study
        • Analyzing results of live optimization studies
      • Windowing
      • Parameters and constraints
  • Optimization Guides
    • Optimize application costs and resource efficiency
      • Kubernetes microservices
        • Optimize cost of a Kubernetes deployment subject to Horizontal Pod Autoscaler
        • Optimize cost of a Kubernetes microservice while preserving SLOs in production
        • Optimize cost of a Java microservice on Kubernetes while preserving SLOs in production
      • Application runtime
        • Optimizing a sample Java OpenJDK application
        • Optimizing cost of a Node.js application with performance tests
        • Optimizing cost of a Golang application with performance tests
        • Optimizing cost of a .NET application with performance tests
      • Applications running on cloud instances
        • Optimizing a sample application running on AWS
      • Spark applications
        • Optimizing a Spark application
    • Optimize application performance and reliability
      • Kubernetes microservices
        • Optimizing cost of a Kubernetes microservice while preserving SLOs in production
        • Optimizing cost of a Java microservice on Kubernetes while preserving SLOs in production
      • Applications running on cloud instances
      • Spark applications
  • Integrating
    • Integrating Telemetry Providers
      • CSV provider
        • Install CSV provider
        • Create CSV telemetry instances
      • Dynatrace provider
        • Install Dynatrace provider
        • Create Dynatrace telemetry instances
          • Import Key Requests
      • Prometheus provider
        • Install Prometheus provider
        • Create Prometheus telemetry instances
        • CloudWatch Exporter
        • OracleDB Exporter
      • Spark History Server provider
        • Install Spark History Server provider
        • Create Spark History Server telemetry instances
      • NeoLoadWeb provider
        • Install NeoLoadWeb telemetry provider
        • Create NeoLoadWeb telemetry instances
      • LoadRunner Professional provider
        • Install LoadRunner Professional provider
        • Create LoadRunner Professional telemetry instances
      • LoadRunner Enterprise provider
        • Install LoadRunner Enterprise provider
        • Create LoadRunner Enterprise telemetry instances
      • AWS provider
        • Install AWS provider
        • Create AWS telemetry instances
    • Integrating Configuration Management
    • Integrating with pipelines
    • Integrating Load Testing
      • Integrating NeoLoad
      • Integrating LoadRunner Professional
      • Integrating LoadRunner Enterprise
  • Reference
    • Glossary
      • System
      • Component
      • Metric
      • Parameter
      • Component Type
      • Workflow
      • Telemetry Provider
      • Telemetry Instance
      • Optimization Pack
      • Goals & Constraints
      • KPI
      • Optimization Study
      • Workspace
      • Safety Policies
    • Construct templates
      • System template
      • Component template
      • Parameter template
      • Metric template
      • Component Types template
      • Telemetry Provider template
      • Telemetry Instance template
      • Workflows template
      • Study template
        • Goal & Constraints
        • Windowing policy
          • Trim windowing
          • Stability windowing
        • Parameter selection
        • Metric selection
        • Workload selection
        • KPIs
        • Steps
          • Baseline step
          • Bootstrap step
          • Preset step
          • Optimize step
        • Parameter rendering
        • Optimizer Options
    • Workflow Operators
      • General operator arguments
      • Executor Operator
      • FileConfigurator Operator
      • LinuxConfigurator Operator
      • WindowsExecutor Operator
      • WindowsFileConfigurator Operator
      • Sleep Operator
      • OracleExecutor Operator
      • OracleConfigurator Operator
      • SparkSSHSubmit Operator
      • SparkSubmit Operator
      • SparkLivy Operator
      • NeoLoadWeb Operator
      • LoadRunner Operator
      • LoadRunnerEnteprise Operator
    • Telemetry metric mapping
      • Dynatrace metrics mapping
      • Prometheus metrics mapping
      • NeoLoadWeb metrics mapping
      • Spark History Server metrics mapping
      • LoadRunner metrics mapping
    • Optimization Packs
      • Linux optimization pack
        • Amazon Linux
        • Amazon Linux 2
        • Amazon Linux 2022
        • CentOS 7
        • CentOS 8
        • RHEL 7
        • RHEL 8
        • Ubuntu 16.04
        • Ubuntu 18.04
        • Ubuntu 20.04
      • DotNet optimization pack
        • DotNet Core 3.1
      • Java OpenJDK optimization pack
        • Java OpenJDK 8
        • Java OpenJDK 11
        • Java OpenJDK 17
      • OpenJ9 optimization pack
        • IBM J9 VM 6
        • IBM J9 VM 8
        • Eclipse Open J9 11
      • Node JS optimization pack
        • Node JS 18
      • GO optimization pack
        • GO 1
      • Web Application optimization pack
        • Web Application
      • Docker optimization pack
        • Container
      • Kubernetes optimization pack
        • Kubernetes Pod
        • Kubernetes Container
        • Kubernetes Workload
        • Kubernetes Namespace
        • Kubernetes Cluster
      • WebSphere optimization pack
        • WebSphere 8.5
        • WebSphere Liberty ND
      • AWS optimization pack
        • EC2
        • Lambda
      • PostgreSQL optimization pack
        • PostgreSQL 11
        • PostgreSQL 12
      • Cassandra optimization pack
        • Cassandra
      • MySQL Database optimization pack
        • MySQL 8.0
      • Oracle Database optimization pack
        • Oracle Database 12c
        • Oracle Database 18c
        • Oracle Database 19c
        • RDS Oracle Database 11g
        • RDS Oracle Database 12c
      • MongoDB optimization pack
        • MongoDB 4
        • MongoDB 5
      • Elasticsearch optimization pack
        • Elasticsearch 6
      • Spark optimization pack
        • Spark Application 2.2.0
        • Spark Application 2.3.0
        • Spark Application 2.4.0
    • Command Line commands
      • Administration commands
      • User and Workspace management commands
      • Authentication commands
      • Resource management commands
      • Optimizer options commands
    • Release Notes
  • Knowledge Base
    • Creating custom optimization packs
    • Setting up a Konakart environment for testing Akamas
    • Modeling a sample Java-based e-commerce application (Konakart)
    • Optimizing a web application
    • Optimizing a sample Java OpenJ9 application
    • Optimizing a sample Linux system
    • Optimizing a MongoDB server instance
    • Optimizing a Kubernetes application
    • Leveraging Ansible to automate AWS instance management
    • Guidelines for optimizing AWS EC2 instances
    • Optimizing an Oracle Database server instance
    • Optimizing an Oracle Database for an e-commerce service
    • Guidelines for optimizing Oracle RDS
    • Optimizing a MySQL server database running Sysbench
    • Optimizing a MySQL server database running OLTPBench
    • Optimizing a live full-stack deployment (K8s + JVM)
    • Setup Instana integration
Powered by GitBook
On this page
  • Supported versions
  • Supported component types:
  • Prerequisites
  • Dynatrace Token
  • Component configuration
  • By id
  • By name
  • By tags
  • By Kubernetes properties
  • Container
  • Pod
  • Improve component mapping with type
  • Mapping multiple entities in one component

Was this helpful?

Export as PDF
  1. Integrating
  2. Integrating Telemetry Providers

Dynatrace provider

Last updated 1 year ago

Was this helpful?

The Dynatrace provider collects metrics from Dynatrace and makes them available to Akamas.

This provider includes support for several technologies. In any case, custom queries can be defined to gather the desired metrics.

Supported versions

Dynatrace SaaS/Managed version 1.187 or later

Supported component types:

  • Kubernetes and Docker

  • Web Application

  • Ubuntu-16.04, Rhel-7.6

  • java-openjdk-8, java-openjdk-11, java-openjdk-17

  • java-ibm-j9vm-6, java-ibm-j9vm-8, java-eclipse-openj9-11

Refer to to see how component-types metrics are extracted by this provider.

Prerequisites

This section provides the minimum requirements that you should match before using the Prometheus provider.

  • Dynatrace SaaS/Managed version 1.187 or later

  • A valid Dynatrace license

  • Dynatrace OneAgent installed on the servers where the Dynatrace entities to be monitored are running

  • Connectivity between Akamas and the Dynatrace server on port 443

  • A Dynatrace API token with the privileges described .

Dynatrace Token

The Dynatrace provider needs a Dynatrace API token with the following privileges:

  • metrics.read (Read metrics)

  • entities.read (Read entities and tags)

  • DataExport (Access problem and event feed, metrics, and topology)

  • ReadSyntheticData (Read synthetic monitors, locations, and nodes)

  • DataImport (Data ingest, e.g.: metrics and events). This permission is used to inform Dynatrace about configuration changes.

Component configuration

To instruct Akamas from which Dynatrace entities (e.g. Workloads, Services, Process Groups) metrics should be collected you can some specific properties on components.

Different strategies can be used to map Dynatrace entities to Akamas components:

  • By id

  • By name

  • By tags

  • By Kubernetes properties

By id

You can map a component to a Dynatrace entity by leveraging the unique id of the entity, which you should put under the id property in the component. This strategy is best used for long-lived instances whose ID does not change during the optimization such as Hosts, Process Groups, or Services.

Here is an example of how to setup host monitoring via id:

name: My Host
properties:
 dynatrace:
  id: HOST-12345YUAB1

You can find the id of a Dynatrace entity by looking at the URL of a Dynatrace dashboard relative to the entity. Watch out that the "host" key is valid only for Linux components, other components (e.g. the JVM) must drill down into the host entities to get the PROCESS_GROUP_INSTANCE or PROCESS_GROUP id.

By name

You can map a component to a Dynatrace entity by leveraging the entity’s display name. This strategy is similar to the map by id but provides a more friendly way to identify the mapped entity. Beware that id multiple entities in your Dynatrace installation share the same name they will all be mapped to the same component. The Dynatrace display name should be put under the name property in the component definition:

name: MyComponent
properties:
 dynatrace:
  name: host-1

By tags

You can map a component to a Dynatrace entity by leveraging Dynatrace tags that match the entity, tags which you should put under the tags property in the component definition.

If multiple tags are specified, instances matching any of the specified tags will be selected.

This sample configuration maps to the component all Dynatrace entities with tag environment: test or [AWS]dynatrace-monitored: true

name: MyComponent
properties:
 dynatrace:
  tags:
     environment: test
     [AWS]dynatrace-monitored: true

Dynatrace supports both key-value and key-only tags. Key-only tags can be specified as Key-value tags with an empty value as in the following example

name: MyComponent
properties:
 dynatrace:
  tags:
     myKeyOnlyTag: ""

By Kubernetes properties

By leveraging dedicated properties, you can map a component to a Dynatrace entity referring to a Kubernetes cluster (e.g., a Pod or a Container).

Container

To properly identify the set of containers to be mapped, you can specify the following properties. Any container matching all the properties will be mapped to the component.

Akamas property
Dynatrace property
Location

namespace

Kubernetes namespace

Container dashboard

containerName

Kubernetes container name

Container dashboard

basePodName

Kubernetes base pod name

Container dashboard

You can retrieve all the information to setup the properties on the top of the Dynatrace container dashboard.

The following example shows how to map a component to a container running in Kubernetes:

dynatrace:
  type: CONTAINER_GROUP_INSTANCE
  kubernetes:
    namespace: boutique
    containerName: server
    basePodName: ak-frontend-*

Pod

To properly identify the set of pods to be mapped, you can specify the following properties. Any pod matching all the properties will be mapped to the component.

Akamas property
Dynatrace property
Location

state

State

Pod dashboard

namespace

Namespace

Pod dashboard

workload

Workload

Pod dashboard

If you need to narrow your pod selection further you can also specify a set of tags as described in the by tags. Note that tags for Kubernetes resources are called Labels in the Dynatrace dashboard.

Labels are specified as key-value in the Akamas configuration. In Dynatrace’s dashboard key and value are separated by a column (:)

Example

The following example shows how to map a component to a pod running in Kubernetes:

dynatrace:
  type: CLOUD_APPLICATION_INSTANCE
  namePrefix: ak-frontend-
  kubernetes:
    labels:
      workload: ak-frontend
      product: hipstershop

Container, Pod, or Workload?

Please note, that when you are mapping components to Kubernetes entities the property type is required to instruct Akamas on which type of entity you want to map. Dynatrace maps Kubernetes entities to the following types:

Kubernetes type
Dynatrace type

Docker container

CONTAINER_GROUP_INSTANCE

Pod

CLOUD_APPLICATION_INSTANCE

Workload

CLOUD_APPLICATION

Namespace

CLOUD_APPLICATION_NAMESPACE

Cluster

KUBERNETES_CLUSTER

Improve component mapping with type

You can improve the matching of components with Dynatrace by adding a type property in the component definition, this property will help the provider match only those Dynatrace entities of the given type.

name: MyComponent
properties:
 dynatrace:
  type: SERVICE     # the type helps the mapping by tags by filtering down entities that are only services
  tags:
     environment: test
     "[AWS]dynatrace-monitored": true

The type of an entity can be retrieved from the URL of the entity’s dashboard

Available entity types can be retrieved, from your Dynatrace instance, with the following command:

curl 'https://<Your Dynatrace host>/api/v2/entityTypes/?pageSize=500' \
  --header 'Authorization: Api-Token <API-TOKEN>'

Mapping multiple entities in one component

In some circumstances, you might want to map multiple Dyantrace entities (e.g. a set of hosts) to the same Akamas component and import aggregated metrics.

This can be easily done by using tags. If Akamas detects that multiple entities have been mapped to the same component it will try to aggregate metrics; some metrics, however, can not be automatically aggregated.

To force aggregation on all available metrics you can add the mergeable: trueproperty to the component under the Dynatrace element.

name: MyComponent
properties:
 dynatrace:
  mergeable: true
  tags:
     environment: test
     [AWS]dynatrace-monitored: true

To generate an API Token for your Dynatrace installation you can follow .

these steps
Dynatrace provider metrics mapping
here