Akamas Docs
3.5
3.5
  • Home
  • Getting started
    • Introduction
    • Free Trial
    • Licensing
    • Deployment
      • Cloud Hosting
    • Security
    • Maintenance & Support (M&S) Services
      • Customer Support Services
      • Support levels for Customer Support Services
      • Support levels for software versions
      • Support levels with Akamas
  • Installing
    • Architecture
    • Docker compose installation
      • Prerequisites
        • Hardware Requirements
        • Software Requirements
        • Network requirements
      • Install Akamas dependencies
      • Install the Akamas Server
        • Online installation mode
          • Online installation behind a Proxy server
        • Offline installation mode
        • Changing UI Ports
        • Setup HTTPS configuration
      • Troubleshoot Docker installation issues
    • Kubernetes installation
      • Prerequisites
        • Cluster Requirements
        • Software Requirements
      • Install Akamas
        • Online Installation
        • Offline Installation - Private registry
      • Installing on OpenShift
      • Accessing Akamas
      • Useful commands
    • Install the CLI
      • Setup the CLI
      • Initialize the CLI
      • Change CLI configuration
      • Use a proxy server
    • Verify the installation
    • Installing the toolbox
    • Install the license
    • Manage anonymous data collection
  • Managing Akamas
    • Akamas logs
    • Audit logs
    • Upgrade Akamas
      • Docker compose
      • Kubernetes
    • Monitor Akamas status
    • Backup & Recover of the Akamas Server
    • Users management
      • Accessing Keycloak admin console
      • Configure an external identity provider
        • Azure Active Directory
        • Google
      • Limit users sessions
        • Local users
        • Identity provider users
    • Collecting support information
  • Using
    • System
    • Telemetry
    • Workflow
    • Study
      • Offline Study
      • Live Study
        • Analyzing results of live optimization studies
      • Windowing
      • Parameters and constraints
  • Optimization Guides
    • Optimize application costs and resource efficiency
      • Kubernetes microservices
        • Optimize cost of a Kubernetes deployment subject to Horizontal Pod Autoscaler
        • Optimize cost of a Kubernetes microservice while preserving SLOs in production
        • Optimize cost of a Java microservice on Kubernetes while preserving SLOs in production
      • Application runtime
        • Optimizing a sample Java OpenJDK application
        • Optimizing cost of a Node.js application with performance tests
        • Optimizing cost of a Golang application with performance tests
        • Optimizing cost of a .NET application with performance tests
      • Applications running on cloud instances
        • Optimizing a sample application running on AWS
      • Spark applications
        • Optimizing a Spark application
    • Optimize application performance and reliability
      • Kubernetes microservices
        • Optimizing cost of a Kubernetes microservice while preserving SLOs in production
        • Optimizing cost of a Java microservice on Kubernetes while preserving SLOs in production
      • Applications running on cloud instances
      • Spark applications
  • Integrating
    • Integrating Telemetry Providers
      • CSV provider
        • Install CSV provider
        • Create CSV telemetry instances
      • Dynatrace provider
        • Install Dynatrace provider
        • Create Dynatrace telemetry instances
          • Import Key Requests
      • Prometheus provider
        • Install Prometheus provider
        • Create Prometheus telemetry instances
        • CloudWatch Exporter
        • OracleDB Exporter
      • Spark History Server provider
        • Install Spark History Server provider
        • Create Spark History Server telemetry instances
      • NeoLoadWeb provider
        • Install NeoLoadWeb telemetry provider
        • Create NeoLoadWeb telemetry instances
      • LoadRunner Professional provider
        • Install LoadRunner Professional provider
        • Create LoadRunner Professional telemetry instances
      • LoadRunner Enterprise provider
        • Install LoadRunner Enterprise provider
        • Create LoadRunner Enterprise telemetry instances
      • AWS provider
        • Install AWS provider
        • Create AWS telemetry instances
    • Integrating Configuration Management
    • Integrating with pipelines
    • Integrating Load Testing
      • Integrating NeoLoad
      • Integrating LoadRunner Professional
      • Integrating LoadRunner Enterprise
  • Reference
    • Glossary
      • System
      • Component
      • Metric
      • Parameter
      • Component Type
      • Workflow
      • Telemetry Provider
      • Telemetry Instance
      • Optimization Pack
      • Goals & Constraints
      • KPI
      • Optimization Study
      • Workspace
      • Safety Policies
    • Construct templates
      • System template
      • Component template
      • Parameter template
      • Metric template
      • Component Types template
      • Telemetry Provider template
      • Telemetry Instance template
      • Workflows template
      • Study template
        • Goal & Constraints
        • Windowing policy
          • Trim windowing
          • Stability windowing
        • Parameter selection
        • Metric selection
        • Workload selection
        • KPIs
        • Steps
          • Baseline step
          • Bootstrap step
          • Preset step
          • Optimize step
        • Parameter rendering
        • Optimizer Options
    • Workflow Operators
      • General operator arguments
      • Executor Operator
      • FileConfigurator Operator
      • LinuxConfigurator Operator
      • WindowsExecutor Operator
      • WindowsFileConfigurator Operator
      • Sleep Operator
      • OracleExecutor Operator
      • OracleConfigurator Operator
      • SparkSSHSubmit Operator
      • SparkSubmit Operator
      • SparkLivy Operator
      • NeoLoadWeb Operator
      • LoadRunner Operator
      • LoadRunnerEnteprise Operator
    • Telemetry metric mapping
      • Dynatrace metrics mapping
      • Prometheus metrics mapping
      • NeoLoadWeb metrics mapping
      • Spark History Server metrics mapping
      • LoadRunner metrics mapping
    • Optimization Packs
      • Linux optimization pack
        • Amazon Linux
        • Amazon Linux 2
        • Amazon Linux 2022
        • CentOS 7
        • CentOS 8
        • RHEL 7
        • RHEL 8
        • Ubuntu 16.04
        • Ubuntu 18.04
        • Ubuntu 20.04
      • DotNet optimization pack
        • DotNet Core 3.1
      • Java OpenJDK optimization pack
        • Java OpenJDK 8
        • Java OpenJDK 11
        • Java OpenJDK 17
      • OpenJ9 optimization pack
        • IBM J9 VM 6
        • IBM J9 VM 8
        • Eclipse Open J9 11
      • Node JS optimization pack
        • Node JS 18
      • GO optimization pack
        • GO 1
      • Web Application optimization pack
        • Web Application
      • Docker optimization pack
        • Container
      • Kubernetes optimization pack
        • Kubernetes Pod
        • Kubernetes Container
        • Kubernetes Workload
        • Kubernetes Namespace
        • Kubernetes Cluster
      • WebSphere optimization pack
        • WebSphere 8.5
        • WebSphere Liberty ND
      • AWS optimization pack
        • EC2
        • Lambda
      • PostgreSQL optimization pack
        • PostgreSQL 11
        • PostgreSQL 12
      • Cassandra optimization pack
        • Cassandra
      • MySQL Database optimization pack
        • MySQL 8.0
      • Oracle Database optimization pack
        • Oracle Database 12c
        • Oracle Database 18c
        • Oracle Database 19c
        • RDS Oracle Database 11g
        • RDS Oracle Database 12c
      • MongoDB optimization pack
        • MongoDB 4
        • MongoDB 5
      • Elasticsearch optimization pack
        • Elasticsearch 6
      • Spark optimization pack
        • Spark Application 2.2.0
        • Spark Application 2.3.0
        • Spark Application 2.4.0
    • Command Line commands
      • Administration commands
      • User and Workspace management commands
      • Authentication commands
      • Resource management commands
      • Optimizer options commands
    • Release Notes
  • Knowledge Base
    • Creating custom optimization packs
    • Setting up a Konakart environment for testing Akamas
    • Modeling a sample Java-based e-commerce application (Konakart)
    • Optimizing a web application
    • Optimizing a sample Java OpenJ9 application
    • Optimizing a sample Linux system
    • Optimizing a MongoDB server instance
    • Optimizing a Kubernetes application
    • Leveraging Ansible to automate AWS instance management
    • Guidelines for optimizing AWS EC2 instances
    • Optimizing an Oracle Database server instance
    • Optimizing an Oracle Database for an e-commerce service
    • Guidelines for optimizing Oracle RDS
    • Optimizing a MySQL server database running Sysbench
    • Optimizing a MySQL server database running OLTPBench
    • Optimizing a live full-stack deployment (K8s + JVM)
    • Setup Instana integration
Powered by GitBook
On this page
  • Configuration options
  • Telemetry instance reference
  • Use cases
  • Collect system metrics

Was this helpful?

Export as PDF
  1. Integrating
  2. Integrating Telemetry Providers
  3. Dynatrace provider

Create Dynatrace telemetry instances

Last updated 1 year ago

Was this helpful?

The installed provider is shared with all users of your Akamas installation and can monitor many different systems, by configuring appropriate telemetry provider instances.

To create an instance of the Dynatrace provider, build a YAML file (instance.yml in this example) with the definition of the instance:

# Dynatrace Telemetry Provider Instance
provider: Dynatrace
config:
  url: https://wuy711522.live.dynatrace.com
  token: XbERgThisIsAnExampleToken

Then you can create the instance for the system using the Akamas CLI:

akamas create telemetry-instance instance.yml system

Configuration options

When you create an instance of the Dynatrace provider, you should specify some configuration information to allow the provider to correctly extract and process metrics from Dynatrace.

You can specify configuration information within the config part of the YAML of the instance definition.

Required properties

  • url - URL of the Dynatrace installation API (see to retrieve the URL of your installation)

  • token - A Dynatrace API Token with the

Collect additional metrics

You can collect additional metrics with the Dynatrace provider by using the metrics field:

config:
  url: https://wuy71982.live.dynatrace.com
  token: XbERgkKeLgVfDI2SDwI0h
metrics:
- metric: "akamas_metric"                     # extra akamas metrics to monitor
  datasourceMetric: builtin:host:new_metric   # query to execute to extract the metric
  labels:
  - "method"      # the "method" label will be retained within akamas

Configure a proxy for Dynatrace

In the case in which Akamas cannot reach directly your Dynatrace installation, you can configure an HTTP proxy by using the proxy field:

config:
  url: https://wuy71982.live.dynatrace.com
  token: XbERgkKeLgVfDI2SDwI0h
  proxy:
    address: https://dynaproxy  # the URL of the HTTP proxy
    port: 9999                  # the port the proxy listens to

Telemetry instance reference

This section reports the complete reference for the definition of a telemetry instance.

provider: Dynatrace  # this is an instance of the <name> provider
config:
  url: https://wuy71982.live.dynatrace.com
  token: XbERgkKeLgVfDI2SDwI0h
  proxy:
    address: https://dynaproxy # the URL of the HTTP proxy
    port: 9999            # the port the proxy listens to
    username: myusername  # http basic auth username if necessary
    password: mypassword  # http basic auth password if necessary
  tags:
    Environment: Test       # dynatrace tags to be matched for every component

metrics:
- metric: "cpu_usage"  # this is the name of the metric within Akamas
  # The Dynatrace metric name
  datasourceMetric: "builtin:host.cpu.usage"
  extras:
    mergeEntities: true  # instruct the telemetry to aggregate the metric over multiple entities
  aggregation: avg  # The aggregation to perform if the mergeEntities property is set to true

This table shows the reference for the config section within the definition of the Dynatrace provider instance:

Field
Type
Value restrictions
Required
Default Value
Description

url

String

It should be a valid URL

Yes

token

String

Yes

proxy

Object

See Proxy options reference

No

The specification of the HTTP proxy to use to communicate with Dynatrace.

pushEvents

String

true, false

No

true

If set to true the provider will inform dynatrace of the configuration change event which will be visible in the Dynatrace UI.

tags

Object

No

A set of global tags to match Dynatrace entities. The provider uses these tags to apply a default filtering of Dynatrace entities for every component.

Proxy options reference

This table reports the reference for the config → proxy section within the definition of the Dynatrace provider instance:

Field
Type
Value restrictions
Required
Default value
Description

address

String

It should be a valid URL

Yes

The URL of the HTTP proxy to use to communicate with the Dynatrace installation API

port

Number (integer)

1 <port<65535

Yes

The port at which the HTTP proxy listens for connections

username

String

No

The username to use when authenticating against the HTTP proxy, if necessary

password

String

No

The username to use when authenticating against the HTTP proxy, if necessary

Metrics options reference

This table reports the reference for the metrics section within the definition of the Dynatrace provider instance. The section contains a collection of objects with the following properties:

Field
Type
Value Restrictions
Required
Default value
Description

metric

String

It must be an Akamas metric

Yes

The name of an Akamas metric that should map to the new metric you want to gather

datasourceMetric

String

A valid Dynatrace metric

Yes

The Dynatrace query to use to extract metric

labels

Array of strings

-

No

The list of Dynatrace labels that should be retained when gathering the metric

staticLabels

Key-Value

-

No

Static labels that will be attached to metric samples

aggregation

String

No

avg

The aggregation to perform if the mergeEntities property under the extras section is set to true

extras

Object

Only the parameter mergeEntities can be defined to either true or false

No

Section for additional properties

Use cases

This section reports common use cases addressed by this provider.

Collect system metrics

Check the Linux optimization pack for a list of all the system metrics available in Akamas.

As a second step, choose a strategy to map your Linux component (MyLinuxComponent) with the corresponding Dyntrace entity.

Let’s assume you want to map by id your Dynatrace entity, you can find the id in the URL bar of a Dyntrace dashboard of the entity:

Grab the id and add it to the Linux component definition:

name: MyLinuxComponent
description: this is a Linux component
properties:
  dynatrace:
    id: HOST-A987D45512ABCEEE

You can leverage the name of the entity as well:

name: MyLinuxComponent
description: this is a Linux component
properties:
  dynatrace:
    name: Host1

As a third and final step, once the component is all set, you can create an instance of the Dynatrace provider and then build your first studies:

name: Dynatrace
config:
  url: https://my_dyna_installation_url
  token: MY_DYNA_TOKEN

The URL of the Dynatrace installation API (see the )

The Dynatrace API Token the provider should use to interact with Dynatrace. The token should have .

see

As a first step to start extracting metrics from Dyntrace, and make sure it has the right permissions.

generate your API token
official reference
sufficient permissions
Dynatrace metric aggregations
https://www.dynatrace.com/support/help/extend-dynatrace/dynatrace-api/
proper permissions