Quick Guides
  • Free Trial options
  • Quick Guides: Akamas in a sandbox
    • [AIAS-01] Guide: Explore an Optimization Study for a Kubernetes microservices application
      • [AIAS-01] Architecture overview
      • [AIAS-01] Explore the Study
      • [AIAS-01] Explore the System
      • [AIAS-01] Explore the Workflow
      • [AIAS-01] Explore the analysis
      • [AIAS-01] Explore the results
    • [AIAS-02] Guide: Create a study to optimize Java performance using the Akamas UI
      • [AIAS-02] Architecture overview
      • [AIAS-02] Create the Study
      • [AIAS-02] Define the optimization goal
      • [AIAS-02] Define the optimization parameters
      • [AIAS-02] Define the performance metrics
      • [AIAS-02] Define the optimization steps
      • [AIAS-02] Explore the results
    • [AIAS-03] Guide: Create a study to optimize K8s microservices costs using the Akamas CLI
      • [AIAS-03] Architecture overview
      • [AIAS-03] Create the system
      • [AIAS-03] Create the Workflow
      • [AIAS-03] Create the Study
      • [AIAS-03] Explore the results
  • Quick Guides: Akamas in a box
    • [AIAB-00] Install Akamas-in-a-box
      • [AIAB-00] Setup your Linux box
      • [AIAB-00] Install Akamas
    • [AIAB-01] Optimize a Java-based application (Renaissance benchmark)
      • [AIAB-01] Architecture overview
      • [AIAB-01] Create the System and its associated components
      • [AIAB-01] Configure the Telemetry
      • [AIAB-01] Create the workflow
      • [AIAB-01] Create and run the study
      • [AIAB-01] Explore the results
    • [AIAB-02] Optimize a Java-based application (Konakart) with JMeter
      • [AIAB-02] Architecture overview
      • [AIAB-02] Create the system and its components
      • [AIAB-02] Automate performance tests
      • [AIAB-02] Create the Telemetry Provider
      • [AIAB-02] Create the workflow
      • [AIAB-02] Create the study
      • [AIAB-02] Explore the results
    • [AIAB-03] Optimize a Java-based application (Konakart) with LRE
      • [AIAB-03] Architecture overview
      • [AIAB-03] Setup LoadRunner Enterprise
      • [AIAB-03] Create the system and its components
      • [AIAB-03] Create the telemetry instances
      • [AIAB-03] Create the workflow
      • [AIAB-03] Create the optimization study
    • [AIAB-04] Optimize a Java-based Kubernetes application (Online Boutique)
      • [AIAB-04] Architecture overview and setup
      • [AIAB-04] Setup Online Boutique
      • [AIAB-04] Setup Akamas
      • [AIAB-04] Create the system and its components
      • [AIAB-04] Create the workflow
      • [AIAB-04] Create the Study
      • [AIAB-04] Explore the results
Powered by GitBook
On this page

Was this helpful?

Export as PDF
  1. Quick Guides: Akamas in a sandbox
  2. [AIAS-01] Guide: Explore an Optimization Study for a Kubernetes microservices application

[AIAS-01] Explore the Workflow

Previous[AIAS-01] Explore the SystemNext[AIAS-01] Explore the analysis

Last updated 10 months ago

Was this helpful?

From the Study page, you get to the following page by following the Workflow link.

As you can see, the Workflow includes steps that are used to fully automate the performance optimization process. You can explore it by following the left and right arrows.

Akamas executes these steps defined in the workflow for each tuning experiment.

In this example, the worfklow performs the following tasks:

  • write the new configuration (parameter values recommended by Akamas AI) to the K8s deployment file

  • calculate the cloud cost associated with this configuration.

starts the load test (in this study this was done by leveraging a JMeter integration, as illustrated in the )

architecture overview