Quick Guides
  • Free Trial options
  • Quick Guides: Akamas in a sandbox
    • [AIAS-01] Guide: Explore an Optimization Study for a Kubernetes microservices application
      • [AIAS-01] Architecture overview
      • [AIAS-01] Explore the Study
      • [AIAS-01] Explore the System
      • [AIAS-01] Explore the Workflow
      • [AIAS-01] Explore the analysis
      • [AIAS-01] Explore the results
    • [AIAS-02] Guide: Create a study to optimize Java performance using the Akamas UI
      • [AIAS-02] Architecture overview
      • [AIAS-02] Create the Study
      • [AIAS-02] Define the optimization goal
      • [AIAS-02] Define the optimization parameters
      • [AIAS-02] Define the performance metrics
      • [AIAS-02] Define the optimization steps
      • [AIAS-02] Explore the results
    • [AIAS-03] Guide: Create a study to optimize K8s microservices costs using the Akamas CLI
      • [AIAS-03] Architecture overview
      • [AIAS-03] Create the system
      • [AIAS-03] Create the Workflow
      • [AIAS-03] Create the Study
      • [AIAS-03] Explore the results
  • Quick Guides: Akamas in a box
    • [AIAB-00] Install Akamas-in-a-box
      • [AIAB-00] Setup your Linux box
      • [AIAB-00] Install Akamas
    • [AIAB-01] Optimize a Java-based application (Renaissance benchmark)
      • [AIAB-01] Architecture overview
      • [AIAB-01] Create the System and its associated components
      • [AIAB-01] Configure the Telemetry
      • [AIAB-01] Create the workflow
      • [AIAB-01] Create and run the study
      • [AIAB-01] Explore the results
    • [AIAB-02] Optimize a Java-based application (Konakart) with JMeter
      • [AIAB-02] Architecture overview
      • [AIAB-02] Create the system and its components
      • [AIAB-02] Automate performance tests
      • [AIAB-02] Create the Telemetry Provider
      • [AIAB-02] Create the workflow
      • [AIAB-02] Create the study
      • [AIAB-02] Explore the results
    • [AIAB-03] Optimize a Java-based application (Konakart) with LRE
      • [AIAB-03] Architecture overview
      • [AIAB-03] Setup LoadRunner Enterprise
      • [AIAB-03] Create the system and its components
      • [AIAB-03] Create the telemetry instances
      • [AIAB-03] Create the workflow
      • [AIAB-03] Create the optimization study
    • [AIAB-04] Optimize a Java-based Kubernetes application (Online Boutique)
      • [AIAB-04] Architecture overview and setup
      • [AIAB-04] Setup Online Boutique
      • [AIAB-04] Setup Akamas
      • [AIAB-04] Create the system and its components
      • [AIAB-04] Create the workflow
      • [AIAB-04] Create the Study
      • [AIAB-04] Explore the results
Powered by GitBook
On this page

Was this helpful?

Export as PDF
  1. Quick Guides: Akamas in a sandbox
  2. [AIAS-02] Guide: Create a study to optimize Java performance using the Akamas UI

[AIAS-02] Define the optimization parameters

Previous[AIAS-02] Define the optimization goalNext[AIAS-02] Define the performance metrics

Last updated 10 months ago

Was this helpful?

It’s now time to select which parameters Akamas needs to tune in this study.

Select the jvm component and add the following JVM parameters:

  • jvm_maxHeapSize

  • jvm_newSize

  • jvm_maxHeapFreeRatio

  • jvm_gcType

  • jvm_survivorRatio

  • jvm_maxTenuringThreshold

It is also possible to tell Akamas the range of values each parameter can have: this way, AI will suggest configurations that respect desired limits. For example, in the sandbox environment, the max heap size of the JVM has to be limited to 1GB.

Select the following range of values by clicking on the EDIT DOMAIN of the corresponding parameter:

  • jvm_maxHeapSize: from 32MB to 1024MB

  • jvm_newSize: from 32MB to 1024MB

  • jvm_maxHeapFreeRatio: from 41 to 100

Akamas supports constraints among parameters to avoid incorrect combinations of values. In this example, the JVM newSize parameter needs to be lower or equal to maxHeapSize. You can add a new constraint to tell Akamas to keep this relation in consideration during the optimization: