Akamas Docs
3.1.3
3.1.3
  • How to use this documentation
  • Getting started with Akamas
    • Introduction to Akamas
    • Licensing
    • Deployment
      • Cloud Hosting
    • Security
    • Maintenance & Support (M&S) Services
      • Customer Support Services
      • Support levels for Customer Support Services
      • Support levels for software versions
      • Support levels with Akamas 3.1
  • Installing Akamas
    • Akamas Architecture
    • Prerequisites
      • Hardware Requirements
      • Software Requirements
      • Network requirements
    • Install Akamas dependencies
    • Install the Akamas Server
      • Online installation mode
        • Online installation behind a Proxy server
      • Offline installation mode
      • Changing UI Ports
      • Setup HTTPS configuration
    • Install the Akamas CLI
      • Setup the Akamas CLI
      • Verify the Akamas CLI
      • Initialize Akamas CLI
      • Change CLI configuration
    • Verify the Akamas Server
    • Install the Akamas license
    • Manage anonymous data collection
    • Troubleshoot install issues
    • Manage the Akamas Server
      • Akamas logs
      • Audit logs
      • Install upgrades and patches
      • Monitor the Akamas Server
      • Backup & Recover of the Akamas Server
  • Using Akamas
    • General optimization process and methodology
    • Preparing optimization studies
      • Modeling systems
      • Modeling components
        • Creating custom optimization packs
        • Managing optimization packs
      • Creating telemetry instances
      • Creating automation workflows
        • Creating workflows for offline studies
        • Performing load testing to support optimization activities
        • Creating workflows for live optimizations
      • Creating optimization studies
        • Defining optimization goal & constraints
        • Defining windowing policies
        • Defining KPIs
        • Defining parameters & metrics
        • Defining workloads
        • Defining optimization steps
        • Setting safety policies
    • Running optimization studies
      • Before running optimization studies
      • Analyzing results of offline optimization studies
        • Optimization Insights
      • Analyzing results of live optimization studies
      • Before applying optimization results
    • Guidelines for choosing optimization parameters
      • Guidelines for JVM (OpenJ9)
      • Guidelines for JVM layer (OpenJDK)
      • Guidelines for Oracle Database
      • Guidelines for PostgreSQL
    • Guidelines for defining optimization studies
      • Optimizing Linux
      • Optimizing Java OpenJDK
      • Optimizing OpenJ9
      • Optimizing Web Applications
      • Optimizing Kubernetes
      • Optimizing Spark
      • Optimizing Oracle Database
      • Optimizing MongoDB
      • Optimizing MySQL Database
      • Optimizing PostgreSQL
  • Integrating Akamas
    • Integrating Telemetry Providers
      • CSV provider
        • Install CSV provider
        • Create CSV telemetry instances
      • Dynatrace provider
        • Install Dynatrace provider
        • Create Dynatrace telemetry instances
      • Prometheus provider
        • Install Prometheus provider
        • Create Prometheus telemetry instances
        • CloudWatch Exporter
        • OracleDB Exporter
      • Spark History Server provider
        • Install Spark History Server provider
        • Create Spark History Server telemetry instances
      • NeoLoadWeb provider
        • Install NeoLoadWeb telemetry provider
        • Create NeoLoadWeb telemetry instances
      • LoadRunner Professional provider
        • Install LoadRunner Professional provider
        • Create LoadRunner Professional telemetry instances
      • LoadRunner Enterprise provider
        • Install LoadRunner Enterprise provider
        • Create LoadRunner Enterprise telemetry instances
      • AWS provider
        • Install AWS provider
        • Create AWS telemetry instances
    • Integrating Configuration Management
    • Integrating Value Stream Delivery
    • Integrating Load Testing
      • Integrating NeoLoad
      • Integrating Load Runner Professional
      • Integrating LoadRunner Enterprise
  • Akamas Reference
    • Glossary
      • System
      • Component
      • Metric
      • Parameter
      • Component Type
      • Workflow
      • Telemetry Provider
      • Telemetry Instance
      • Optimization Pack
      • Goals & Constraints
      • KPI
      • Optimization Study
      • Offline Optimization Study
      • Live Optimization Study
      • Workspace
    • Construct templates
      • System template
      • Component template
      • Parameter template
      • Metric template
      • Component Types template
      • Telemetry Provider template
      • Telemetry Instance template
      • Workflows template
      • Study template
        • Goal & Constraints
        • Windowing policy
          • Trim windowing
          • Stability windowing
        • Parameter selection
        • Metric selection
        • Workload selection
        • KPIs
        • Steps
          • Baseline step
          • Bootstrap step
          • Preset step
          • Optimize step
        • Parameter rendering
    • Workflow Operators
      • General operator arguments
      • Executor Operator
      • FileConfigurator Operator
      • LinuxConfigurator Operator
      • WindowsExecutor Operator
      • WindowsFileConfigurator Operator
      • Sleep Operator
      • OracleExecutor Operator
      • OracleConfigurator Operator
      • SparkSSHSubmit Operator
      • SparkSubmit Operator
      • SparkLivy Operator
      • NeoLoadWeb Operator
      • LoadRunner Operator
      • LoadRunnerEnteprise Operator
    • Telemetry metric mapping
      • Dynatrace metrics mapping
      • Prometheus metrics mapping
      • NeoLoadWeb metrics mapping
      • Spark History Server metrics mapping
      • LoadRunner metrics mapping
    • Optimization Packs
      • Linux optimization pack
        • Amazon Linux
        • Amazon Linux 2
        • Amazon Linux 2022
        • CentOS 7
        • CentOS 8
        • RHEL 7
        • RHEL 8
        • Ubuntu 16.04
        • Ubuntu 18.04
        • Ubuntu 20.04
      • DotNet optimization pack
        • DotNet Core 3.1
      • Java OpenJDK optimization pack
        • Java OpenJDK 8
        • Java OpenJDK 11
      • OpenJ9 optimization pack
        • IBM J9 VM 6
        • IBM J9 VM 8
        • Eclipse Open J9 11
      • NodeJS optimization pack
        • NodeJS
      • GO optimization pack
        • GO 1
      • Web Application optimization pack
        • Web Application
      • Docker optimization pack
        • Container
      • Kubernetes optimization pack
        • Kubernetes Pod
        • Kubernetes Container
        • Kubernetes Workload
        • Kubernetes Namespace
        • Kubernetes Cluster
      • WebSphere optimization pack
        • WebSphere 8.5
        • WebSphere Liberty ND
      • AWS optimization pack
        • EC2
        • Lambda
      • PostgreSQL optimization pack
        • PostgreSQL 11
        • PostgreSQL 12
      • Cassandra optimization pack
        • Cassandra
      • MySQL Database optimization pack
        • MySQL 8.0
      • Oracle Database optimization pack
        • Oracle Database 12c
        • Oracle Database 18c
        • Oracle Database 19c
        • RDS Oracle Database 11g
        • RDS Oracle Database 12c
      • MongoDB optimization pack
        • MongoDB 4
        • MongoDB 5
      • Elasticsearch optimization pack
        • Elasticsearch 6
      • Spark optimization pack
        • Spark Application 2.2.0
        • Spark Application 2.3.0
        • Spark Application 2.4.0
    • Command Line commands
      • Administration commands
      • User and Workspace management commands
      • Authentication commands
      • Resource management commands
      • Optimizer options commands
    • Release Notes
  • Knowledge Base
    • Setting up a Konakart environment for testing Akamas
    • Modeling a sample Java-based e-commerce application (Konakart)
    • Optimizing a web application
    • Optimizing a sample Java OpenJ9 application
    • Optimizing a sample Java OpenJDK application
    • Optimizing a sample Linux system
    • Optimizing a MongoDB server instance
    • Optimizing a Kubernetes application
    • Leveraging Ansible to automate AWS instance management
    • Guidelines for optimizing AWS EC2 instances
    • Optimizing a sample application running on AWS
    • Optimizing a Spark application
    • Optimizing an Oracle Database server instance
    • Optimizing an Oracle Database for an e-commerce service
    • Guidelines for optimizing Oracle RDS
    • Optimizing a MySQL server database running Sysbench
    • Optimizing a MySQL server database running OLTPBench
    • Optimizing cost of a Kubernetes application while preserving SLOs in production
    • Optimizing a live full-stack deployment (K8s + JVM)
  • Akamas Free Trial
Powered by GitBook
On this page
  • Environment setup
  • Optimization setup
  • Optimization packs
  • System
  • Workflow
  • Telemetry
  • Study

Was this helpful?

Export as PDF
  1. Knowledge Base

Optimizing cost of a Kubernetes application while preserving SLOs in production

Last updated 2 years ago

Was this helpful?

In this example, you will use Akamas live optimization to minimize the cost of a Kubernetes deployment, while preserving application performance and reliability requirements.

Environment setup

In this example, you need:

  • an Akamas instance

  • a Kubernetes cluster, with a deployment to be optimized

  • the kubectl command installed in the Akamas instance, configured to access the target Kubernetes and with privileges to get and update the deployment configurations

  • a supported telemetry data source (e.g. Prometheus or Dynatrace) configured to collect metrics from the target Kubernetes cluster

Optimization setup

Optimization packs

This example leverages the following optimization packs:

System

The system represents the Kubernetes deployment to be optimized (let's call it "frontend"). You can create a system.yaml manifest like this:

name: frontend
description: Kubernetes frontend deployment

Create the new system resource:

akamas create system system.yaml

The system will then have two components:

  • A Kubernetes container component, which contains container-level metrics like CPU usage and parameters like CPU limits

  • A Web Application component, which contains service-level metrics like throughput and response time

In this example, we assume the deployment to be optimized is called frontend, with a container named server, and is located within the boutique namespace. We also assume that Dynatrace is used as a telemetry provider.

Kubernetes component

Create a component-container.yaml manifest like the following:

name: container
description: Kubernetes container, part of the frontend deployment
componentType: Kubernetes Container
properties:
  dynatrace:
    type: CONTAINER_GROUP_INSTANCE
    kubernetes:
      namespace: boutique
      containerName: server
      basePodName: frontend-*

Then run:

akamas create component component-container.yaml frontend

Now create a component-webapp.yaml manifest like the following:

name: webapp
description: The service related to the frontend deployment
componentType: Web Application
properties:
  dynatrace:
    id: <TELEMETRY_DYNATRACE_WEBAPP_ID>

Then run:

akamas create component component-webapp.yaml frontend

Workflow

The workflow in this example is composed of three main steps:

  1. Update the Kubernetes deployment manifest with the Akamas recommended deployment parameters (CPU and memory limits)

  2. Apply the new parameters (kubectl apply)

  3. Wait for the rollout to complete

  4. Sleep for 30 minutes (observation interval)

Create a workflow.yaml manifest like the following:

name: frontend
tasks:
  - name: configure
    operator: FileConfigurator
    arguments:
      source:
        hostname: mymachine
        username: user
        key: /home/user/.ssh/key
        path: frontend.yaml.templ
      target:
        hostname: mymachine
        username: user
        key: /home/user/.ssh/key
        path: frontend.yaml

  - name: apply
    operator: Executor
    arguments:
      timeout: 5m
      host:
        hostname: mymachine
        username: user
        key: /home/user/.ssh/key
      command: kubectl apply -f frontend.yaml

  - name: verify
    operator: Executor
    arguments:
      timeout: 5m
      host:
        hostname: mymachine
        username: user
        key: /home/user/.ssh/key
      command: kubectl rollout status --timeout=5m deployment/frontend -n boutique;

  - name: observe
    operator: Sleep
    arguments:
      seconds: 1800

Then run:

akamas create workflow workflow.yaml

Telemetry

Create the telemetry.yamlmanifest like the following:

provider: Dynatrace
config:
  url: <YOUR_DYNATRACE_URL>
  token: <YOUR_DYNATRACE_TOKEN>
  pushEvents: false

Then run:

akamas create telemetry-instance telemetry.yaml frontend

Study

In this live optimization:

  • the goal is to reduce the cost of the Kubernetes deployment. In this example, the cost is based on the amount of CPU and memory limits (assuming requests = limits).

  • the approval mode is set to manual, a new recommendation is generated daily

  • to avoid impacting application performance, constraints are specified on desired response times and error rates

  • to avoid impacting application reliability, constraints are specified on peak resource usage and out-of-memory kills

  • the parameters to be tuned are the container CPU and memory limits (we assume requests=limits in the deployment file)

Create a study.yaml manifest like the following:

name: frontend
system: frontend
workflow: frontend
requireApproval: true

goal:
  objective: minimize
  function:
    formula: (((container.container_cpu_limit/1000) * 3) + (container.container_memory_limit/(1024*1024*1024)))
  constraints:
    absolute:
      - name: Response Time
        formula: webapp.requests_response_time <= 300
      - name: Error Rate
        formula: webapp.service_error_rate:max <= 0.05
      - name: Container CPU saturation
        formula: container.container_cpu_util:p95 < 0.8
      - name: Container memory saturation
        formula: container.container_memory_util:max < 0.7
      - name: Container out-of-memory kills
        formula: container.container_oom_kills_count == 0

parametersSelection:
  - name: container.cpu_limit
    domain: [300, 1000]
  - name: container.memory_limit
    domain: [800, 1536]

windowing:
  type: trim
  trim: [5m, 0m]
  task: observe

workloadsSelection:
  - name: webapp.requests_throughput

steps:
  - name: baseline
    type: baseline
    numberOfTrials: 48
    values:
      container.cpu_limit: 1000
      container.memory_limit: 1536

  - name: optimize
    type: optimize
    numberOfTrials: 48
    numberOfExperiments: 100
    numberOfInitExperiments: 0
    maxFailedExperiments: 50

Then run:

akamas create study study.yaml

You can now follow the live optimization progress and explore the results using the Akamas UI for Live optimizations.

Kubernetes
Web application