Akamas Docs
3.5
3.5
  • Home
  • Getting started
    • Introduction
    • Free Trial
    • Licensing
    • Deployment
      • Cloud Hosting
    • Security
    • Maintenance & Support (M&S) Services
      • Customer Support Services
      • Support levels for Customer Support Services
      • Support levels for software versions
      • Support levels with Akamas
  • Installing
    • Architecture
    • Docker compose installation
      • Prerequisites
        • Hardware Requirements
        • Software Requirements
        • Network requirements
      • Install Akamas dependencies
      • Install the Akamas Server
        • Online installation mode
          • Online installation behind a Proxy server
        • Offline installation mode
        • Changing UI Ports
        • Setup HTTPS configuration
      • Troubleshoot Docker installation issues
    • Kubernetes installation
      • Prerequisites
        • Cluster Requirements
        • Software Requirements
      • Install Akamas
        • Online Installation
        • Offline Installation - Private registry
      • Installing on OpenShift
      • Accessing Akamas
      • Useful commands
    • Install the CLI
      • Setup the CLI
      • Initialize the CLI
      • Change CLI configuration
      • Use a proxy server
    • Verify the installation
    • Installing the toolbox
    • Install the license
    • Manage anonymous data collection
  • Managing Akamas
    • Akamas logs
    • Audit logs
    • Upgrade Akamas
      • Docker compose
      • Kubernetes
    • Monitor Akamas status
    • Backup & Recover of the Akamas Server
    • Users management
      • Accessing Keycloak admin console
      • Configure an external identity provider
        • Azure Active Directory
        • Google
      • Limit users sessions
        • Local users
        • Identity provider users
    • Collecting support information
  • Using
    • System
    • Telemetry
    • Workflow
    • Study
      • Offline Study
      • Live Study
        • Analyzing results of live optimization studies
      • Windowing
      • Parameters and constraints
  • Optimization Guides
    • Optimize application costs and resource efficiency
      • Kubernetes microservices
        • Optimize cost of a Kubernetes deployment subject to Horizontal Pod Autoscaler
        • Optimize cost of a Kubernetes microservice while preserving SLOs in production
        • Optimize cost of a Java microservice on Kubernetes while preserving SLOs in production
      • Application runtime
        • Optimizing a sample Java OpenJDK application
        • Optimizing cost of a Node.js application with performance tests
        • Optimizing cost of a Golang application with performance tests
        • Optimizing cost of a .NET application with performance tests
      • Applications running on cloud instances
        • Optimizing a sample application running on AWS
      • Spark applications
        • Optimizing a Spark application
    • Optimize application performance and reliability
      • Kubernetes microservices
        • Optimizing cost of a Kubernetes microservice while preserving SLOs in production
        • Optimizing cost of a Java microservice on Kubernetes while preserving SLOs in production
      • Applications running on cloud instances
      • Spark applications
  • Integrating
    • Integrating Telemetry Providers
      • CSV provider
        • Install CSV provider
        • Create CSV telemetry instances
      • Dynatrace provider
        • Install Dynatrace provider
        • Create Dynatrace telemetry instances
          • Import Key Requests
      • Prometheus provider
        • Install Prometheus provider
        • Create Prometheus telemetry instances
        • CloudWatch Exporter
        • OracleDB Exporter
      • Spark History Server provider
        • Install Spark History Server provider
        • Create Spark History Server telemetry instances
      • NeoLoadWeb provider
        • Install NeoLoadWeb telemetry provider
        • Create NeoLoadWeb telemetry instances
      • LoadRunner Professional provider
        • Install LoadRunner Professional provider
        • Create LoadRunner Professional telemetry instances
      • LoadRunner Enterprise provider
        • Install LoadRunner Enterprise provider
        • Create LoadRunner Enterprise telemetry instances
      • AWS provider
        • Install AWS provider
        • Create AWS telemetry instances
    • Integrating Configuration Management
    • Integrating with pipelines
    • Integrating Load Testing
      • Integrating NeoLoad
      • Integrating LoadRunner Professional
      • Integrating LoadRunner Enterprise
  • Reference
    • Glossary
      • System
      • Component
      • Metric
      • Parameter
      • Component Type
      • Workflow
      • Telemetry Provider
      • Telemetry Instance
      • Optimization Pack
      • Goals & Constraints
      • KPI
      • Optimization Study
      • Workspace
      • Safety Policies
    • Construct templates
      • System template
      • Component template
      • Parameter template
      • Metric template
      • Component Types template
      • Telemetry Provider template
      • Telemetry Instance template
      • Workflows template
      • Study template
        • Goal & Constraints
        • Windowing policy
          • Trim windowing
          • Stability windowing
        • Parameter selection
        • Metric selection
        • Workload selection
        • KPIs
        • Steps
          • Baseline step
          • Bootstrap step
          • Preset step
          • Optimize step
        • Parameter rendering
        • Optimizer Options
    • Workflow Operators
      • General operator arguments
      • Executor Operator
      • FileConfigurator Operator
      • LinuxConfigurator Operator
      • WindowsExecutor Operator
      • WindowsFileConfigurator Operator
      • Sleep Operator
      • OracleExecutor Operator
      • OracleConfigurator Operator
      • SparkSSHSubmit Operator
      • SparkSubmit Operator
      • SparkLivy Operator
      • NeoLoadWeb Operator
      • LoadRunner Operator
      • LoadRunnerEnteprise Operator
    • Telemetry metric mapping
      • Dynatrace metrics mapping
      • Prometheus metrics mapping
      • NeoLoadWeb metrics mapping
      • Spark History Server metrics mapping
      • LoadRunner metrics mapping
    • Optimization Packs
      • Linux optimization pack
        • Amazon Linux
        • Amazon Linux 2
        • Amazon Linux 2022
        • CentOS 7
        • CentOS 8
        • RHEL 7
        • RHEL 8
        • Ubuntu 16.04
        • Ubuntu 18.04
        • Ubuntu 20.04
      • DotNet optimization pack
        • DotNet Core 3.1
      • Java OpenJDK optimization pack
        • Java OpenJDK 8
        • Java OpenJDK 11
        • Java OpenJDK 17
      • OpenJ9 optimization pack
        • IBM J9 VM 6
        • IBM J9 VM 8
        • Eclipse Open J9 11
      • Node JS optimization pack
        • Node JS 18
      • GO optimization pack
        • GO 1
      • Web Application optimization pack
        • Web Application
      • Docker optimization pack
        • Container
      • Kubernetes optimization pack
        • Kubernetes Pod
        • Kubernetes Container
        • Kubernetes Workload
        • Kubernetes Namespace
        • Kubernetes Cluster
      • WebSphere optimization pack
        • WebSphere 8.5
        • WebSphere Liberty ND
      • AWS optimization pack
        • EC2
        • Lambda
      • PostgreSQL optimization pack
        • PostgreSQL 11
        • PostgreSQL 12
      • Cassandra optimization pack
        • Cassandra
      • MySQL Database optimization pack
        • MySQL 8.0
      • Oracle Database optimization pack
        • Oracle Database 12c
        • Oracle Database 18c
        • Oracle Database 19c
        • RDS Oracle Database 11g
        • RDS Oracle Database 12c
      • MongoDB optimization pack
        • MongoDB 4
        • MongoDB 5
      • Elasticsearch optimization pack
        • Elasticsearch 6
      • Spark optimization pack
        • Spark Application 2.2.0
        • Spark Application 2.3.0
        • Spark Application 2.4.0
    • Command Line commands
      • Administration commands
      • User and Workspace management commands
      • Authentication commands
      • Resource management commands
      • Optimizer options commands
    • Release Notes
  • Knowledge Base
    • Creating custom optimization packs
    • Setting up a Konakart environment for testing Akamas
    • Modeling a sample Java-based e-commerce application (Konakart)
    • Optimizing a web application
    • Optimizing a sample Java OpenJ9 application
    • Optimizing a sample Linux system
    • Optimizing a MongoDB server instance
    • Optimizing a Kubernetes application
    • Leveraging Ansible to automate AWS instance management
    • Guidelines for optimizing AWS EC2 instances
    • Optimizing an Oracle Database server instance
    • Optimizing an Oracle Database for an e-commerce service
    • Guidelines for optimizing Oracle RDS
    • Optimizing a MySQL server database running Sysbench
    • Optimizing a MySQL server database running OLTPBench
    • Optimizing a live full-stack deployment (K8s + JVM)
    • Setup Instana integration
Powered by GitBook
On this page
  • Configure the registry
  • Transfer the Docker images
  • Create the configuration file
  • Configure the authentication
  • Define Size
  • Start the installation
  • Check the installation
  • Installing telemetry providers

Was this helpful?

Export as PDF
  1. Installing
  2. Kubernetes installation
  3. Install Akamas

Offline Installation - Private registry

Last updated 10 months ago

Was this helpful?

Before starting the installation, make sure the are met.

Configure the registry

If your cluster is in an air-gapped network or is unable to reach the Akamas image repository, you need to copy the required images to your private registry.

The procedure described here leverages your local environment to upload the images. Thus, to interact between the Akamas and private registry, it requires Docker to be installed and configured.

Transfer the Docker images

The offline installation requires you to pull the images and migrate them to your private registry. In the following command replace the chart version to download the related list of images:

curl -sO  http://helm.akamas.io/images/1.5.4/image-list

Once the import is complete, you must re-tag and upload the images. Run the following snippet, replacing <REGISTRY_URL> with the actual URL of the private registry:

NEW_REGISTRY="<REGISTRY_URL>"

while read IMAGE; do
    REGISTRY=$(echo "$IMAGE" | cut -d '/' -f 1)
    REPOSITORY=$(echo "$IMAGE" | cut -d ':' -f 1 | cut -d "/" -f2-)
    TAG=$(echo "$IMAGE" | cut -d ':' -f 2)

    NEW_IMAGE="$NEW_REGISTRY/$REPOSITORY:$TAG"
    echo "Migrating $IMAGE to $NEW_IMAGE"

    docker pull "$IMAGE"
    docker tag "$IMAGE" "$NEW_IMAGE"
    docker push "$NEW_IMAGE"
done <image-list

This process could last several minutes, once the upload is complete, you can proceed with the next steps.

Create the configuration file

To proceed with the installation, you must create a Helm Values file, called akamas.yaml in this guide, containing the mandatory configuration values required to customize your application. The following template contains the minimal set required to install Akamas:

akamas.yaml
# Akamas customer name. Must match the value in the license (required)
akamasCustomer: <CUSTOMER_NAME>

# Akamas administrator password. If not set a random password will be generated
akamasAdminPassword: <ADMIN_PASSWORD>

# The URL that will be used to access Akamas, for example 'http://akamas.kube.example.com' (required)
akamasBaseUrl: <INSTANCE_HOSTNAME>


global:
  imageRegistry: gitlab-runner-new.dev.akamas.io

elasticsearch:
  image: gitlab-runner-new.dev.akamas.io/akamas/elastic/elasticsearch
  
kibana:
  image: gitlab-runner-new.dev.akamas.io/akamas/elastic/kibana
  
airflow:
  images:
    airflow:
      repository: gitlab-runner-new.dev.akamas.io/akamas/airflow_service
      tag: 2.8.0
    pgbouncer:
      repository: gitlab-runner-new.dev.akamas.io/akamas/airflow_service
      tag: ~
    pgbouncerExporter:
      repository: gitlab-runner-new.dev.akamas.io/akamas/airflow_service
      tag: ~
  webserver:   
    extraInitContainers:
      - name: wait-logstash
        image: gitlab-runner-new.dev.akamas.io/akamas/utils:0.1.5
        command:
          - "sh"
          - "-c"
          - "until ./wait-for-it.sh -h logstash -p 9600 -t 120 -e _node/pipelines -j '.pipelines|length' -r 10 ; do echo Waiting for Logstash; sleep 10; done; echo Connected"
        resources:
          limits:
            cpu: 100m
            memory: 50Mi
          requests:
            cpu: 10m
            memory: 50Mi
  scheduler:
    podAnnotations:
      k8s.akamas.com/imageName: gitlab-runner-new.dev.akamas.io/akamas/airflow_service
    env:
      - name: CONTAINER_NAME
        value: airflow
      - name: SERVICE
        value: airflow
      - name: LOGTYPE
        value: airflow
      - name: IMAGE_NAME
        value: gitlab-runner-new.dev.akamas.io/akamas/airflow_service
      - name: AIRFLOW_CONN_HTTP_SYSTEM
        value: "http://:@system:8080"
      - name: AIRFLOW_CONN_HTTP_CAMPAIGN
        value: "http://:@campaign:8080"
      - name: AIRFLOW_CONN_HTTP_ORCHESTRATOR
        value: "http://:@orchestrator:8080"
      - name: KEYCLOAK_ENDPOINT
        value: "http://keycloak:8080"

    extraInitContainers:
      - name: wait-logstash
        image: gitlab-runner-new.dev.akamas.io/akamas/utils:0.1.5
        command:
          - "sh"
          - "-c"
          - "until ./wait-for-it.sh -h logstash -p 9600 -t 120 -e _node/pipelines -j '.pipelines|length' -r 10 ; do echo Waiting for Logstash; sleep 10; done; echo Connected"
        resources:
          limits:
            cpu: 100m
            memory: 50Mi
          requests:
            cpu: 10m
            memory: 50Mi

Replace in the file the following placeholders:

  • CUSTOMER_NAME: customer name provided with the Akamas license

  • ADMIN_PASSWORD: initial administrator password

  • REGISTRY_URL: the URL for the private registry used in the transfer process above

Configure the authentication

To authenticate to your private registry, you must manually create the Secret required to pull the images. If the registry uses basic authentication, you can create the credentials in the namespace by running the following command:

kubectl create secret docker-registry registry-token \
  --namespace akamas \
  --docker-server=<REGISTRY_URL> \
  --docker-username=<USER> \
  --docker-password=<PASSWORD>

Otherwise, you can leverage any credential already configured on your machine by running the following command:

kubectl create secret docker-registry registry-token \
  --namespace akamas \
  --from-file=.dockerconfigjson=<PATH/TO/.docker/config.json>

Define Size

Medium

#Medium
airflow:
  config:
    core:
      parallelism: 102
  scheduler:
    resources:
      limits:
        cpu: 2500m         
        memory: 21000Mi    
      requests:
        cpu: 1000m         
        memory: 21000Mi   

Large

#Large
airflow:
  config:
    core:
      parallelism: 202
  scheduler:
    resources:
      limits:
        cpu: 2500m         
        memory: 28000Mi    
      requests:
        cpu: 1000m         
        memory: 28000Mi    
telemetry:
  parallelism: 50

Start the installation

From a machine that can reach the endpoint, run the following command to download the chart:

helm pull --repo http://helm.akamas.io/charts --version '1.5.4' akamas

The command downloads the latest version chart version as an archive named akamas-<version>.tgz. The file can be transferred to the machine where the installation will be run. Replace akamas/akamas with the download package in the following commands.

If you wish to see and override the values that Helm will use to install Akamas, you may execute the following command.

helm show values akamas-<version>.tgz

Now, with the configuration file you just created (and the new variables you added to override the defaults), you can start the installation with the following command:

helm upgrade --install \
  --create-namespace --namespace akamas \
  -f akamas.yaml \
  akamas akamas-<version>.tgz

This command will create the Akamas resources within the specified namespace. You can define a different namespace by changing the argument --namespace <your-namespace>

An example output of a successful installation is the following:

Release "akamas" does not exist. Installing it now.
NAME: akamas
LAST DEPLOYED: Thu Sep 21 10:39:01 2023
NAMESPACE: akamas
STATUS: deployed
REVISION: 1
NOTES:
Akamas has been installed

NOTES:
Akamas has been installed

To get the initial password use the following command:

kubectl get secret akamas-admin-credentials -o go-template='{{ .data.password | base64decode }}'

Check the installation

To monitor the application startup, run the command kubectl get pods. After a few minutes, the expected output should be similar to the following:

NAME                           READY   STATUS    RESTARTS   AGE
airflow-6ffbbf46d8-dqf8m       3/3     Running   0          5m
analyzer-67cf968b48-jhxvd      1/1     Running   0          5m
campaign-666c5db96-xvl2z       1/1     Running   0          5m
database-0                     1/1     Running   0          5m
elasticsearch-master-0         1/1     Running   0          5m
keycloak-66f748d54-7l6wb       1/1     Running   0          5m
kibana-6d86b8cbf5-6nz9v        1/1     Running   0          5m
kong-7d6fdd97cf-c2xc9          1/1     Running   0          5m
license-54ff5cc5d8-tr64l       1/1     Running   0          5m
log-5974b5c86b-4q7lj           1/1     Running   0          5m
logstash-8697dd69f8-9bkts      1/1     Running   0          5m
metrics-577fb6bf8d-j7cl2       1/1     Running   0          5m
optimizer-5b7576c6bb-96w8n     1/1     Running   0          5m
orchestrator-95c57fd45-lh4m6   1/1     Running   0          5m
store-5489dd65f4-lsk62         1/1     Running   0          5m
system-5877d4c89b-h8s6v        1/1     Running   0          5m
telemetry-8cf448bf4-x68tr      1/1     Running   0          5m
ui-7f7f4c4f44-55lv5            1/1     Running   0          5m
users-966f8f78-wv4zj           1/1     Running   0          5m

At this point, you should be able to access the Akamas UI using the endpoint specified in the akamasBaseUrl, and interact through the Akamas CLI with the path /api.

Installing telemetry providers

Akamas on Kubernetes is provided as a set of templates packaged in a chart archive managed by .

INSTANCE_HOSTNAME: the URL that will be used to expose the Akamas installation, for example https://akamas.k8s.example.com when using an Ingress, or http//:localhost:9000 when using port-forwarding. Refer to for the list of the supported access methods and a reference for any additional configuration required.

This section describes how to configure the authentication to your private registry. If your registry does not require any authentication, skip directly to the .

Akamas can be installed in three sizes Small, Medium, and Large as explained in the section. By default, the chart installs the Small size. If you want to install a specific size add the following snippet to your values.yaml file.

If the host you are using to install akamas can reach helm.akamas.io you can follow the instructions in the . Otherwise, follow the instructions below to download the chart content locally.

If you haven't already, you can update your configuration file to use a different type of service to expose Akamas' endpoints. To do so, pick from the the configuration snippet for the service type of your choice, add it to the akamas.yaml file, update the akamasBaseUrl value, and re-run the installation command to update your Helm release.

During online installation, a set of out-of-the-box telemetry providers are automatically installed. For offline installation, this step has to be executed manually. To install the telemetry providers required for your environment proceed to section.

requirements
Helm
Accessing Akamas
cluster prerequisite
Accessing Akamas
Integrating Telemetry Providers
installation section
online installation guide