Akamas Docs
3.5
3.5
  • Home
  • Getting started
    • Introduction
    • Free Trial
    • Licensing
    • Deployment
      • Cloud Hosting
    • Security
    • Maintenance & Support (M&S) Services
      • Customer Support Services
      • Support levels for Customer Support Services
      • Support levels for software versions
      • Support levels with Akamas
  • Installing
    • Architecture
    • Docker compose installation
      • Prerequisites
        • Hardware Requirements
        • Software Requirements
        • Network requirements
      • Install Akamas dependencies
      • Install the Akamas Server
        • Online installation mode
          • Online installation behind a Proxy server
        • Offline installation mode
        • Changing UI Ports
        • Setup HTTPS configuration
      • Troubleshoot Docker installation issues
    • Kubernetes installation
      • Prerequisites
        • Cluster Requirements
        • Software Requirements
      • Install Akamas
        • Online Installation
        • Offline Installation - Private registry
      • Installing on OpenShift
      • Accessing Akamas
      • Useful commands
    • Install the CLI
      • Setup the CLI
      • Initialize the CLI
      • Change CLI configuration
      • Use a proxy server
    • Verify the installation
    • Installing the toolbox
    • Install the license
    • Manage anonymous data collection
  • Managing Akamas
    • Akamas logs
    • Audit logs
    • Upgrade Akamas
      • Docker compose
      • Kubernetes
    • Monitor Akamas status
    • Backup & Recover of the Akamas Server
    • Users management
      • Accessing Keycloak admin console
      • Configure an external identity provider
        • Azure Active Directory
        • Google
      • Limit users sessions
        • Local users
        • Identity provider users
    • Collecting support information
  • Using
    • System
    • Telemetry
    • Workflow
    • Study
      • Offline Study
      • Live Study
        • Analyzing results of live optimization studies
      • Windowing
      • Parameters and constraints
  • Optimization Guides
    • Optimize application costs and resource efficiency
      • Kubernetes microservices
        • Optimize cost of a Kubernetes deployment subject to Horizontal Pod Autoscaler
        • Optimize cost of a Kubernetes microservice while preserving SLOs in production
        • Optimize cost of a Java microservice on Kubernetes while preserving SLOs in production
      • Application runtime
        • Optimizing a sample Java OpenJDK application
        • Optimizing cost of a Node.js application with performance tests
        • Optimizing cost of a Golang application with performance tests
        • Optimizing cost of a .NET application with performance tests
      • Applications running on cloud instances
        • Optimizing a sample application running on AWS
      • Spark applications
        • Optimizing a Spark application
    • Optimize application performance and reliability
      • Kubernetes microservices
        • Optimizing cost of a Kubernetes microservice while preserving SLOs in production
        • Optimizing cost of a Java microservice on Kubernetes while preserving SLOs in production
      • Applications running on cloud instances
      • Spark applications
  • Integrating
    • Integrating Telemetry Providers
      • CSV provider
        • Install CSV provider
        • Create CSV telemetry instances
      • Dynatrace provider
        • Install Dynatrace provider
        • Create Dynatrace telemetry instances
          • Import Key Requests
      • Prometheus provider
        • Install Prometheus provider
        • Create Prometheus telemetry instances
        • CloudWatch Exporter
        • OracleDB Exporter
      • Spark History Server provider
        • Install Spark History Server provider
        • Create Spark History Server telemetry instances
      • NeoLoadWeb provider
        • Install NeoLoadWeb telemetry provider
        • Create NeoLoadWeb telemetry instances
      • LoadRunner Professional provider
        • Install LoadRunner Professional provider
        • Create LoadRunner Professional telemetry instances
      • LoadRunner Enterprise provider
        • Install LoadRunner Enterprise provider
        • Create LoadRunner Enterprise telemetry instances
      • AWS provider
        • Install AWS provider
        • Create AWS telemetry instances
    • Integrating Configuration Management
    • Integrating with pipelines
    • Integrating Load Testing
      • Integrating NeoLoad
      • Integrating LoadRunner Professional
      • Integrating LoadRunner Enterprise
  • Reference
    • Glossary
      • System
      • Component
      • Metric
      • Parameter
      • Component Type
      • Workflow
      • Telemetry Provider
      • Telemetry Instance
      • Optimization Pack
      • Goals & Constraints
      • KPI
      • Optimization Study
      • Workspace
      • Safety Policies
    • Construct templates
      • System template
      • Component template
      • Parameter template
      • Metric template
      • Component Types template
      • Telemetry Provider template
      • Telemetry Instance template
      • Workflows template
      • Study template
        • Goal & Constraints
        • Windowing policy
          • Trim windowing
          • Stability windowing
        • Parameter selection
        • Metric selection
        • Workload selection
        • KPIs
        • Steps
          • Baseline step
          • Bootstrap step
          • Preset step
          • Optimize step
        • Parameter rendering
        • Optimizer Options
    • Workflow Operators
      • General operator arguments
      • Executor Operator
      • FileConfigurator Operator
      • LinuxConfigurator Operator
      • WindowsExecutor Operator
      • WindowsFileConfigurator Operator
      • Sleep Operator
      • OracleExecutor Operator
      • OracleConfigurator Operator
      • SparkSSHSubmit Operator
      • SparkSubmit Operator
      • SparkLivy Operator
      • NeoLoadWeb Operator
      • LoadRunner Operator
      • LoadRunnerEnteprise Operator
    • Telemetry metric mapping
      • Dynatrace metrics mapping
      • Prometheus metrics mapping
      • NeoLoadWeb metrics mapping
      • Spark History Server metrics mapping
      • LoadRunner metrics mapping
    • Optimization Packs
      • Linux optimization pack
        • Amazon Linux
        • Amazon Linux 2
        • Amazon Linux 2022
        • CentOS 7
        • CentOS 8
        • RHEL 7
        • RHEL 8
        • Ubuntu 16.04
        • Ubuntu 18.04
        • Ubuntu 20.04
      • DotNet optimization pack
        • DotNet Core 3.1
      • Java OpenJDK optimization pack
        • Java OpenJDK 8
        • Java OpenJDK 11
        • Java OpenJDK 17
      • OpenJ9 optimization pack
        • IBM J9 VM 6
        • IBM J9 VM 8
        • Eclipse Open J9 11
      • Node JS optimization pack
        • Node JS 18
      • GO optimization pack
        • GO 1
      • Web Application optimization pack
        • Web Application
      • Docker optimization pack
        • Container
      • Kubernetes optimization pack
        • Kubernetes Pod
        • Kubernetes Container
        • Kubernetes Workload
        • Kubernetes Namespace
        • Kubernetes Cluster
      • WebSphere optimization pack
        • WebSphere 8.5
        • WebSphere Liberty ND
      • AWS optimization pack
        • EC2
        • Lambda
      • PostgreSQL optimization pack
        • PostgreSQL 11
        • PostgreSQL 12
      • Cassandra optimization pack
        • Cassandra
      • MySQL Database optimization pack
        • MySQL 8.0
      • Oracle Database optimization pack
        • Oracle Database 12c
        • Oracle Database 18c
        • Oracle Database 19c
        • RDS Oracle Database 11g
        • RDS Oracle Database 12c
      • MongoDB optimization pack
        • MongoDB 4
        • MongoDB 5
      • Elasticsearch optimization pack
        • Elasticsearch 6
      • Spark optimization pack
        • Spark Application 2.2.0
        • Spark Application 2.3.0
        • Spark Application 2.4.0
    • Command Line commands
      • Administration commands
      • User and Workspace management commands
      • Authentication commands
      • Resource management commands
      • Optimizer options commands
    • Release Notes
  • Knowledge Base
    • Creating custom optimization packs
    • Setting up a Konakart environment for testing Akamas
    • Modeling a sample Java-based e-commerce application (Konakart)
    • Optimizing a web application
    • Optimizing a sample Java OpenJ9 application
    • Optimizing a sample Linux system
    • Optimizing a MongoDB server instance
    • Optimizing a Kubernetes application
    • Leveraging Ansible to automate AWS instance management
    • Guidelines for optimizing AWS EC2 instances
    • Optimizing an Oracle Database server instance
    • Optimizing an Oracle Database for an e-commerce service
    • Guidelines for optimizing Oracle RDS
    • Optimizing a MySQL server database running Sysbench
    • Optimizing a MySQL server database running OLTPBench
    • Optimizing a live full-stack deployment (K8s + JVM)
    • Setup Instana integration
Powered by GitBook
On this page

Was this helpful?

Export as PDF
  1. Reference
  2. Telemetry metric mapping

Spark History Server metrics mapping

This page describes the mapping between metrics provided by Spark History Server to Akamas metrics for each supported component type

Component Type
Notes

Spark Application

Component metric
Granularity
Document Path
JSON query

spark_duration

job

/{appId}/1/jobs/{jobId}

.duration

spark_completed_tasks

job

/{appId}/1/jobs/{jobId}

.numCompletedTasks

spark_active_tasks

job

/{appId}/1/jobs/{jobId}

.numActiveTasks

spark_skipped_tasks

job

/{appId}/1/jobs/{jobId}

.numSkippedTasks

spark_failed_tasks

job

/{appId}/1/jobs/{jobId}

.numFailedTasks

spark_killed_tasks

job

/{appId}/1/jobs/{jobId}

.numKilledTasks

spark_completed_stages

job

/{appId}/1/jobs/{jobId}

.numCompletedStages

spark_failed_stages

job

/{appId}/1/jobs/{jobId}

.numFailedStages

spark_skipped_stages

job

/{appId}/1/jobs/{jobId}

.numSkippedStages

spark_active_stages

job

/{appId}/1/jobs/{jobId}

.numActiveStages

spark_duration

stage

/{appId}/1/stages/{stageId}

.getDuration

spark_task_stage_executor_run_time

stage

/{appId}/1/stages/{stageId}

.getExecutorRunTime

spark_task_stage_executor_cpu_time

stage

/{appId}/1/stages/{stageId}

.getExecutorCpuTime

spark_active_tasks

stage

/{appId}/1/stages/{stageId}

.getNumActiveTasks

spark_completed_tasks

stage

/{appId}/1/stages/{stageId}

.getNumCompleteTasks

spark_failed_tasks

stage

/{appId}/1/stages/{stageId}

.getNumFailedTasks

spark_killed_tasks

stage

/{appId}/1/stages/{stageId}

.getNumKilledTasks

spark_task_stage_input_bytes_read

stage

/{appId}/1/stages/{stageId}

.getInputBytes

spark_task_stage_input_records_read

stage

/{appId}/1/stages/{stageId}

.getInputRecords

spark_task_stage_output_bytes_written

stage

/{appId}/1/stages/{stageId}

.getOutputBytes

spark_task_stage_output_records_written

stage

/{appId}/1/stages/{stageId}

.getOutputRecords

spark_stage_shuffle_read_bytes

stage

/{appId}/1/stages/{stageId}

.getShuffleReadBytes

spark_task_stage_shuffle_read_records

stage

/{appId}/1/stages/{stageId}

.getShuffleReadRecords

spark_task_stage_shuffle_write_bytes

stage

/{appId}/1/stages/{stageId}

.getShuffleWriteBytes

spark_task_stage_shuffle_write_records

stage

/{appId}/1/stages/{stageId}

.getShuffleWriteRecords

spark_task_stage_memory_bytes_spilled

stage

/{appId}/1/stages/{stageId}

.getMemoryBytesSpilled

spark_task_stage_disk_bytes_spilled

stage

/{appId}/1/stages/{stageId}

.getDiskBytesSpilled

spark_duration

task

/{appId}/1/stages/{stageId}

.tasks[].duration

spark_task_executor_deserialize_time

task

/{appId}/1/stages/{stageId}

.tasks[].taskMetrics.executorDeserializeTime

spark_task_executor_deserialize_cpu_time

task

/{appId}/1/stages/{stageId}

.tasks[].taskMetrics.executorDeserializeCpuTime

spark_task_stage_executor_run_time

task

/{appId}/1/stages/{stageId}

.tasks[].taskMetrics.executorRunTime

spark_task_stage_executor_cpu_time

task

/{appId}/1/stages/{stageId}

.tasks[].taskMetrics.executorCpuTime

spark_task_result_size

task

/{appId}/1/stages/{stageId}

.tasks[].taskMetrics.resultSize

spark_task_jvm_gc_duration

task

/{appId}/1/stages/{stageId}

.tasks[].taskMetrics.jvmGcTime

spark_task_result_serialization_time

task

/{appId}/1/stages/{stageId}

.tasks[].taskMetrics.resultSerializationTime

spark_task_stage_memory_bytes_spilled

task

/{appId}/1/stages/{stageId}

.tasks[].taskMetrics.memoryBytesSpilled

spark_task_stage_disk_bytes_spilled

task

/{appId}/1/stages/{stageId}

.tasks[].taskMetrics.diskBytesSpilled

spark_task_peak_execution_memory

task

/{appId}/1/stages/{stageId}

.tasks[].taskMetrics.peakExecutionMemory

spark_task_stage_input_bytes_read

task

/{appId}/1/stages/{stageId}

.tasks[].taskMetrics.inputMetrics.bytesRead

spark_task_stage_input_records_read

task

/{appId}/1/stages/{stageId}

.tasks[].taskMetrics.inputMetrics.recordsRead

spark_task_stage_output_bytes_written

task

/{appId}/1/stages/{stageId}

.tasks[].taskMetrics.outputMetrics.bytesWritten

spark_task_stage_output_records_written

task

/{appId}/1/stages/{stageId}

.tasks[].taskMetrics.outputMetrics.recordsWritten

spark_task_shuffle_read_remote_blocks_fetched

task

/{appId}/1/stages/{stageId}

.tasks[].taskMetrics.shuffleReadMetrics.remoteBlocksFetched

spark_task_shuffle_read_local_blocks_fetched

task

/{appId}/1/stages/{stageId}

.tasks[].taskMetrics.shuffleReadMetrics.localBlocksFetched

spark_task_shuffle_read_fetch_wait_time

task

/{appId}/1/stages/{stageId}

.tasks[].taskMetrics.shuffleReadMetrics.fetchWaitTime

spark_task_shuffle_read_remote_bytes

task

/{appId}/1/stages/{stageId}

.tasks[].taskMetrics.shuffleReadMetrics.remoteBytesRead

spark_task_shuffle_read_remote_bytes_to_disk

task

/{appId}/1/stages/{stageId}

.tasks[].taskMetrics.shuffleReadMetrics.remoteBytesReadToDisk

spark_task_shuffle_read_local_bytes

task

/{appId}/1/stages/{stageId}

.tasks[].taskMetrics.shuffleReadMetrics.localBytesRead

spark_task_stage_shuffle_read_records

task

/{appId}/1/stages/{stageId}

.tasks[].taskMetrics.shuffleReadMetrics.recordsRead

spark_task_stage_shuffle_write_bytes

task

/{appId}/1/stages/{stageId}

.tasks[].taskMetrics.shuffleWriteMetrics.bytesWritten

spark_task_shuffle_write_time

task

/{appId}/1/stages/{stageId}

.tasks[].taskMetrics.shuffleWriteMetrics.writeTime

spark_task_stage_shuffle_write_records

task

/{appId}/1/stages/{stageId}

.tasks[].taskMetrics.shuffleWriteMetrics.recordsWritten

spark_executor_rdd_blocks

executor

/{appId}/1/allexecutors

select(.id!='driver) | .rddBlocks

spark_executor_mem_used

executor

/{appId}/1/allexecutors

select(.id!='driver) | .memoryUsed

spark_executor_disk_used

executor

/{appId}/1/allexecutors

select(.id!='driver) | .diskUsed

spark_executor_cores

executor

/{appId}/1/allexecutors

select(.id!='driver) | .totalCores

spark_active_tasks

executor

/{appId}/1/allexecutors

select(.id!='driver) | .activeTasks

spark_failed_tasks

executor

/{appId}/1/allexecutors

select(.id!='driver) | .failedTasks

spark_completed_tasks

executor

/{appId}/1/allexecutors

select(.id!='driver) | .completedTasks

spark_executor_total_tasks

executor

/{appId}/1/allexecutors

select(.id!='driver) | .totalTasks

spark_executor_total_duration

executor

/{appId}/1/allexecutors

select(.id!='driver) | .totalDuration

spark_executor_total_jvm_gc_duration

executor

/{appId}/1/allexecutors

select(.id!='driver) | .totalGCTime

spark_executor_total_input_bytes

executor

/{appId}/1/allexecutors

select(.id!='driver) | .totalInputBytes

spark_executor_total_shuffle_read

executor

/{appId}/1/allexecutors

select(.id!='driver) | .totalShuffleRead

spark_executor_total_shuffle_write

executor

/{appId}/1/allexecutors

select(.id!='driver) | .totalShuffleWrite

spark_executor_max_mem_used

executor

/{appId}/1/allexecutors

select(.id!='driver) | .maxMemory

spark_executor_used_on_heap_storage_memory

executor

/{appId}/1/allexecutors

select(.id!='driver) | .memoryMetrics.usedOnHeapStorageMemory

spark_executor_used_off_heap_storage_memory

executor

/{appId}/1/allexecutors

select(.id!='driver) | .memoryMetrics.usedOffHeapStorageMemory

spark_executor_total_on_heap_storage_memory

executor

/{appId}/1/allexecutors

select(.id!='driver) | .memoryMetrics.totalOnHeapStorageMemory

spark_executor_total_off_heap_storage_memory

executor

/{appId}/1/allexecutors

select(.id!='driver) | .memoryMetrics.totalOffHeapStorageMemory

spark_driver_rdd_blocks

driver

/{appId}/1/allexecutors

select(.id=='driver') | .rddBlocks

spark_driver_mem_used

driver

/{appId}/1/allexecutors

select(.id=='driver') | .memoryUsed

spark_driver_disk_used

driver

/{appId}/1/allexecutors

select(.id=='driver') | .diskUsed

spark_driver_cores

driver

/{appId}/1/allexecutors

select(.id=='driver') | .totalCores

spark_driver_total_duration

driver

/{appId}/1/allexecutors

select(.id=='driver') | .totalDuration

spark_driver_total_jvm_gc_duration

driver

/{appId}/1/allexecutors

select(.id=='driver') | .totalGCTime

spark_driver_total_input_bytes

driver

/{appId}/1/allexecutors

select(.id=='driver') | .totalInputBytes

spark_driver_total_shuffle_read

driver

/{appId}/1/allexecutors

select(.id=='driver') | .totalShuffleRead

spark_driver_total_shuffle_write

driver

/{appId}/1/allexecutors

select(.id=='driver') | .totalShuffleWrite

spark_driver_max_mem_used

driver

/{appId}/1/allexecutors

select(.id=='driver') | .maxMemory

spark_driver_used_on_heap_storage_memory

driver

/{appId}/1/allexecutors

select(.id=='driver') | .memoryMetrics.usedOnHeapStorageMemory

spark_driver_used_off_heap_storage_memory

driver

/{appId}/1/allexecutors

select(.id=='driver') | .memoryMetrics.usedOffHeapStorageMemory

spark_driver_total_on_heap_storage_memory

driver

/{appId}/1/allexecutors

select(.id=='driver') | .memoryMetrics.totalOnHeapStorageMemory

spark_driver_total_off_heap_storage_memory

driver

/{appId}/1/allexecutors

select(.id=='driver') | .memoryMetrics.totalOffHeapStorageMemory

Last updated 1 year ago

Was this helpful?

Spark Application