Akamas Docs
3.5
3.5
  • Home
  • Getting started
    • Introduction
    • Free Trial
    • Licensing
    • Deployment
      • Cloud Hosting
    • Security
    • Maintenance & Support (M&S) Services
      • Customer Support Services
      • Support levels for Customer Support Services
      • Support levels for software versions
      • Support levels with Akamas
  • Installing
    • Architecture
    • Docker compose installation
      • Prerequisites
        • Hardware Requirements
        • Software Requirements
        • Network requirements
      • Install Akamas dependencies
      • Install the Akamas Server
        • Online installation mode
          • Online installation behind a Proxy server
        • Offline installation mode
        • Changing UI Ports
        • Setup HTTPS configuration
      • Troubleshoot Docker installation issues
    • Kubernetes installation
      • Prerequisites
        • Cluster Requirements
        • Software Requirements
      • Install Akamas
        • Online Installation
        • Offline Installation - Private registry
      • Installing on OpenShift
      • Accessing Akamas
      • Useful commands
    • Install the CLI
      • Setup the CLI
      • Initialize the CLI
      • Change CLI configuration
      • Use a proxy server
    • Verify the installation
    • Installing the toolbox
    • Install the license
    • Manage anonymous data collection
  • Managing Akamas
    • Akamas logs
    • Audit logs
    • Upgrade Akamas
      • Docker compose
      • Kubernetes
    • Monitor Akamas status
    • Backup & Recover of the Akamas Server
    • Users management
      • Accessing Keycloak admin console
      • Configure an external identity provider
        • Azure Active Directory
        • Google
      • Limit users sessions
        • Local users
        • Identity provider users
    • Collecting support information
  • Using
    • System
    • Telemetry
    • Workflow
    • Study
      • Offline Study
      • Live Study
        • Analyzing results of live optimization studies
      • Windowing
      • Parameters and constraints
  • Optimization Guides
    • Optimize application costs and resource efficiency
      • Kubernetes microservices
        • Optimize cost of a Kubernetes deployment subject to Horizontal Pod Autoscaler
        • Optimize cost of a Kubernetes microservice while preserving SLOs in production
        • Optimize cost of a Java microservice on Kubernetes while preserving SLOs in production
      • Application runtime
        • Optimizing a sample Java OpenJDK application
        • Optimizing cost of a Node.js application with performance tests
        • Optimizing cost of a Golang application with performance tests
        • Optimizing cost of a .NET application with performance tests
      • Applications running on cloud instances
        • Optimizing a sample application running on AWS
      • Spark applications
        • Optimizing a Spark application
    • Optimize application performance and reliability
      • Kubernetes microservices
        • Optimizing cost of a Kubernetes microservice while preserving SLOs in production
        • Optimizing cost of a Java microservice on Kubernetes while preserving SLOs in production
      • Applications running on cloud instances
      • Spark applications
  • Integrating
    • Integrating Telemetry Providers
      • CSV provider
        • Install CSV provider
        • Create CSV telemetry instances
      • Dynatrace provider
        • Install Dynatrace provider
        • Create Dynatrace telemetry instances
          • Import Key Requests
      • Prometheus provider
        • Install Prometheus provider
        • Create Prometheus telemetry instances
        • CloudWatch Exporter
        • OracleDB Exporter
      • Spark History Server provider
        • Install Spark History Server provider
        • Create Spark History Server telemetry instances
      • NeoLoadWeb provider
        • Install NeoLoadWeb telemetry provider
        • Create NeoLoadWeb telemetry instances
      • LoadRunner Professional provider
        • Install LoadRunner Professional provider
        • Create LoadRunner Professional telemetry instances
      • LoadRunner Enterprise provider
        • Install LoadRunner Enterprise provider
        • Create LoadRunner Enterprise telemetry instances
      • AWS provider
        • Install AWS provider
        • Create AWS telemetry instances
    • Integrating Configuration Management
    • Integrating with pipelines
    • Integrating Load Testing
      • Integrating NeoLoad
      • Integrating LoadRunner Professional
      • Integrating LoadRunner Enterprise
  • Reference
    • Glossary
      • System
      • Component
      • Metric
      • Parameter
      • Component Type
      • Workflow
      • Telemetry Provider
      • Telemetry Instance
      • Optimization Pack
      • Goals & Constraints
      • KPI
      • Optimization Study
      • Workspace
      • Safety Policies
    • Construct templates
      • System template
      • Component template
      • Parameter template
      • Metric template
      • Component Types template
      • Telemetry Provider template
      • Telemetry Instance template
      • Workflows template
      • Study template
        • Goal & Constraints
        • Windowing policy
          • Trim windowing
          • Stability windowing
        • Parameter selection
        • Metric selection
        • Workload selection
        • KPIs
        • Steps
          • Baseline step
          • Bootstrap step
          • Preset step
          • Optimize step
        • Parameter rendering
        • Optimizer Options
    • Workflow Operators
      • General operator arguments
      • Executor Operator
      • FileConfigurator Operator
      • LinuxConfigurator Operator
      • WindowsExecutor Operator
      • WindowsFileConfigurator Operator
      • Sleep Operator
      • OracleExecutor Operator
      • OracleConfigurator Operator
      • SparkSSHSubmit Operator
      • SparkSubmit Operator
      • SparkLivy Operator
      • NeoLoadWeb Operator
      • LoadRunner Operator
      • LoadRunnerEnteprise Operator
    • Telemetry metric mapping
      • Dynatrace metrics mapping
      • Prometheus metrics mapping
      • NeoLoadWeb metrics mapping
      • Spark History Server metrics mapping
      • LoadRunner metrics mapping
    • Optimization Packs
      • Linux optimization pack
        • Amazon Linux
        • Amazon Linux 2
        • Amazon Linux 2022
        • CentOS 7
        • CentOS 8
        • RHEL 7
        • RHEL 8
        • Ubuntu 16.04
        • Ubuntu 18.04
        • Ubuntu 20.04
      • DotNet optimization pack
        • DotNet Core 3.1
      • Java OpenJDK optimization pack
        • Java OpenJDK 8
        • Java OpenJDK 11
        • Java OpenJDK 17
      • OpenJ9 optimization pack
        • IBM J9 VM 6
        • IBM J9 VM 8
        • Eclipse Open J9 11
      • Node JS optimization pack
        • Node JS 18
      • GO optimization pack
        • GO 1
      • Web Application optimization pack
        • Web Application
      • Docker optimization pack
        • Container
      • Kubernetes optimization pack
        • Kubernetes Pod
        • Kubernetes Container
        • Kubernetes Workload
        • Kubernetes Namespace
        • Kubernetes Cluster
      • WebSphere optimization pack
        • WebSphere 8.5
        • WebSphere Liberty ND
      • AWS optimization pack
        • EC2
        • Lambda
      • PostgreSQL optimization pack
        • PostgreSQL 11
        • PostgreSQL 12
      • Cassandra optimization pack
        • Cassandra
      • MySQL Database optimization pack
        • MySQL 8.0
      • Oracle Database optimization pack
        • Oracle Database 12c
        • Oracle Database 18c
        • Oracle Database 19c
        • RDS Oracle Database 11g
        • RDS Oracle Database 12c
      • MongoDB optimization pack
        • MongoDB 4
        • MongoDB 5
      • Elasticsearch optimization pack
        • Elasticsearch 6
      • Spark optimization pack
        • Spark Application 2.2.0
        • Spark Application 2.3.0
        • Spark Application 2.4.0
    • Command Line commands
      • Administration commands
      • User and Workspace management commands
      • Authentication commands
      • Resource management commands
      • Optimizer options commands
    • Release Notes
  • Knowledge Base
    • Creating custom optimization packs
    • Setting up a Konakart environment for testing Akamas
    • Modeling a sample Java-based e-commerce application (Konakart)
    • Optimizing a web application
    • Optimizing a sample Java OpenJ9 application
    • Optimizing a sample Linux system
    • Optimizing a MongoDB server instance
    • Optimizing a Kubernetes application
    • Leveraging Ansible to automate AWS instance management
    • Guidelines for optimizing AWS EC2 instances
    • Optimizing an Oracle Database server instance
    • Optimizing an Oracle Database for an e-commerce service
    • Guidelines for optimizing Oracle RDS
    • Optimizing a MySQL server database running Sysbench
    • Optimizing a MySQL server database running OLTPBench
    • Optimizing a live full-stack deployment (K8s + JVM)
    • Setup Instana integration
Powered by GitBook
On this page
  • Options for both online and offline studies
  • Options for offline studies
  • Options for live studies
  • Example

Was this helpful?

Export as PDF
  1. Reference
  2. Construct templates
  3. Study template

Optimizer Options

The Optimizer Options is a set of parameters used to fine-tune the study optimization strategy during the optimize step.

Optimizer options have the following structure:

Field
Type
Value restrictions
Description

onlineMode

string

RECOMMEND, FULLY_AUTONOMOUS

Changes are approved automatically or must be edited/approved by the user

safetyMode

string

LOCAL, GLOBAL

Defines how Akamas optimizer evaluates goal constraints

safetyFactor

decimal

between 0 and 1

Parameter that impacts the distance from goal constraints for new configurations

workloadOptimizedForStrategy

string

LAST, MOST_VIOLATED, MAXIMIN

Selects the computation strategy to generates future configurations

explorationFactor

decimal, string

between 0 and 1 or FULL_EXPLORATION

Set the tendency to explore toward unexplored configuration values

trialsWithBeta

integer

-

Number of trials that will be executed with beta-warping optimization. If the threshold is reached, the following experiment disables the usage.

Options for both online and offline studies

Safety Factor

The safetyFactor field specifies how much the optimizer should stay on the safe side in evaluating a candidate configuration with respect to the goal constraints. A higher safety factor corresponds to a safer configuration, that is a configuration that is less likely to violate goal constraints.

Acceptable values are all the real values ranging between 0 and 1, with (safetyFactor - 0.5) representing the allowed margin for staying within the defined constraint:

  • 0 means "no safety", as with this value the optimizer totally ignores goal constraint violations;

  • 0.5 means "safe, but no margin", as with this value the optimizer only tries configurations that do not violate the goal constraints, by remaining as close as possible to them;

  • 1 means "super safe", as with this value the optimize only tries configurations that are very far from goal constraints.

For live optimization studies, 0.6 is the default value, while for offline optimization studies, the default value is 0.5.

Options for offline studies

trialsWithBeta: 20

Options for live studies

For live optimization studies, the optimizerOptions field can be used to specify several important parameters governing the live optimization:

optimizerOptions:
  onlineMode: RECOMMEND                    # [RECOMMEND|FULLY_AUTONOMOUS]
  safetyMode: GLOBAL                       # [GLOBAL|LOCAL]
  workloadOptimizedForStrategy: MAXIMIN    # [MAXIMIN|LAST|MOST_VIOLATED]
  safetyFactor: 0.55                       # 0 <= safetyFactor <= 1
  explorationFactor: 0.05                  # 0 <= explorationFactor <= 1 or FULL_EXPLORATION
Online Mode
Safety Mode
Workload strategy

RECOMMEND

GLOBAL

MAXIMIN

FULLY_AUTONOMOUS

LOCAL

LAST

Online Mode

The onlineMode field specifies how the Akamas optimizer should operate:

  • RECOMMEND: configurations are recommended to the user by Akamas and are only applied after having been approved (and possibly modified) by the user;

  • FULLY AUTONOMOUS MODE: configurations are immediately applied by Akamas.

Safety Mode

The safetyMode field describes how the Akamas optimizer should evaluate the goal constraints on a candidate configuration for that configuration to be considered valid:

  • GLOBAL: the constraints must be satisfied by the configuration under all observed workloads in the configuration history - this is the value taken in case onlineMode is set to RECOMMEND;

  • LOCAL: the constraints are evaluated only under the workload selected according to the workload strategy - this should be used with onlineMode set to FULLY_AUTONOMOUS.

Notice that when setting the safetyMode to LOCAL, the recommended configuration is only expected to be good for the specific workload selected under the defined workload strategy, but it might violate constraints under another workload.

Workload Strategy

The workloadOptimizedForStrategy field specifies the workload strategy that drives how Akamas leverages the workload information when looking for the next configuration:

  • MAXIMIN: the optimizer looks for a configuration that maximizes the minimum improvements for all the already observed workloads;

  • MOST_VIOLATED: for each workload, the workload of the configuration with more violations is considered.

Exploration Factor

The explorationFactor field specifies how much the optimizer explores the (unknown) optimization space when looking for new configurations. For any parameter, this factor measures the difference between already tried values and the value of a new possible configuration. A higher exploration factor corresponds to a broader exploration of never-tried-before parameter values.

Acceptable values are all the real values ranging between 0 and 1, plus the special string FULL_EXPLORATION:

  • 0 means "no exploration", as with this value the optimizer chooses a value among the previously seen values for each parameter;

  • 1 means "full exploration, except for categories", as with this value the optimizer for a non-categorical parameter any value among all its domain values can be chosen, while only values (categories) that have already been seen in previous configurations are chosen for a categorical parameter;

  • FULL_EXPLORATION means "full exploration, including categories" as with this value the optimizer chooses any value among all its domain values, including categories, even if not already seen in previous configurations.

Example

The following fragment refers to an optimization study that runs 100 experiments using the SOBOL optimizer and forces 50% of the experiments to use the beta-warping option, enabling a more sophisticated but longer optimization:

name: "my_optimize"  # name of the step
type: "optimize"     # type of the step (optimize)
optimizer: "SOBOL"
numberOfExperiments: 100  # amount of experiments to execute
numberOfTrials: 2         # amount of trials for each experiment

Last updated 1 year ago

Was this helpful?

For , the optimizerOptions field can be used to specify whether beta-warping optimization (a more sophisticated optimization that requires a longer time) should be used and for how many experiments:

Notice that while available as independent options, the optimizer options onlineMode (described ), workloadOptimizedForStrategy () and the safetyFactor () work in conjunction according to the following schema:

All these optimizer options can be changed at any time, that is while the optimization study is running, to become immediately effective. The page in the reference guide provides these specific update commands.

LAST: for each workload, the last observed workload is considered - this works well to find a configuration that is good for the last workloads - it is often used in conjunction with a LOCAL safety mode (see );

In case the desired explorationFactoris 1 but there are some specific parameters that also need to be explored with respect to all its categories, then PRESET steps (refer to the page) can be used to run an optimization study with these values. For an example of a live optimization study where this approach is adopted see .

offline optimization studies
Optimizer options commands
Preset step
Optimizing a live full-stack deployment (K8s + JVM)
here below
here below
see above
here above