Akamas Docs
3.5
3.5
  • Home
  • Getting started
    • Introduction
    • Free Trial
    • Licensing
    • Deployment
      • Cloud Hosting
    • Security
    • Maintenance & Support (M&S) Services
      • Customer Support Services
      • Support levels for Customer Support Services
      • Support levels for software versions
      • Support levels with Akamas
  • Installing
    • Architecture
    • Docker compose installation
      • Prerequisites
        • Hardware Requirements
        • Software Requirements
        • Network requirements
      • Install Akamas dependencies
      • Install the Akamas Server
        • Online installation mode
          • Online installation behind a Proxy server
        • Offline installation mode
        • Changing UI Ports
        • Setup HTTPS configuration
      • Troubleshoot Docker installation issues
    • Kubernetes installation
      • Prerequisites
        • Cluster Requirements
        • Software Requirements
      • Install Akamas
        • Online Installation
        • Offline Installation - Private registry
      • Installing on OpenShift
      • Accessing Akamas
      • Useful commands
    • Install the CLI
      • Setup the CLI
      • Initialize the CLI
      • Change CLI configuration
      • Use a proxy server
    • Verify the installation
    • Installing the toolbox
    • Install the license
    • Manage anonymous data collection
  • Managing Akamas
    • Akamas logs
    • Audit logs
    • Upgrade Akamas
      • Docker compose
      • Kubernetes
    • Monitor Akamas status
    • Backup & Recover of the Akamas Server
    • Users management
      • Accessing Keycloak admin console
      • Configure an external identity provider
        • Azure Active Directory
        • Google
      • Limit users sessions
        • Local users
        • Identity provider users
    • Collecting support information
  • Using
    • System
    • Telemetry
    • Workflow
    • Study
      • Offline Study
      • Live Study
        • Analyzing results of live optimization studies
      • Windowing
      • Parameters and constraints
  • Optimization Guides
    • Optimize application costs and resource efficiency
      • Kubernetes microservices
        • Optimize cost of a Kubernetes deployment subject to Horizontal Pod Autoscaler
        • Optimize cost of a Kubernetes microservice while preserving SLOs in production
        • Optimize cost of a Java microservice on Kubernetes while preserving SLOs in production
      • Application runtime
        • Optimizing a sample Java OpenJDK application
        • Optimizing cost of a Node.js application with performance tests
        • Optimizing cost of a Golang application with performance tests
        • Optimizing cost of a .NET application with performance tests
      • Applications running on cloud instances
        • Optimizing a sample application running on AWS
      • Spark applications
        • Optimizing a Spark application
    • Optimize application performance and reliability
      • Kubernetes microservices
        • Optimizing cost of a Kubernetes microservice while preserving SLOs in production
        • Optimizing cost of a Java microservice on Kubernetes while preserving SLOs in production
      • Applications running on cloud instances
      • Spark applications
  • Integrating
    • Integrating Telemetry Providers
      • CSV provider
        • Install CSV provider
        • Create CSV telemetry instances
      • Dynatrace provider
        • Install Dynatrace provider
        • Create Dynatrace telemetry instances
          • Import Key Requests
      • Prometheus provider
        • Install Prometheus provider
        • Create Prometheus telemetry instances
        • CloudWatch Exporter
        • OracleDB Exporter
      • Spark History Server provider
        • Install Spark History Server provider
        • Create Spark History Server telemetry instances
      • NeoLoadWeb provider
        • Install NeoLoadWeb telemetry provider
        • Create NeoLoadWeb telemetry instances
      • LoadRunner Professional provider
        • Install LoadRunner Professional provider
        • Create LoadRunner Professional telemetry instances
      • LoadRunner Enterprise provider
        • Install LoadRunner Enterprise provider
        • Create LoadRunner Enterprise telemetry instances
      • AWS provider
        • Install AWS provider
        • Create AWS telemetry instances
    • Integrating Configuration Management
    • Integrating with pipelines
    • Integrating Load Testing
      • Integrating NeoLoad
      • Integrating LoadRunner Professional
      • Integrating LoadRunner Enterprise
  • Reference
    • Glossary
      • System
      • Component
      • Metric
      • Parameter
      • Component Type
      • Workflow
      • Telemetry Provider
      • Telemetry Instance
      • Optimization Pack
      • Goals & Constraints
      • KPI
      • Optimization Study
      • Workspace
      • Safety Policies
    • Construct templates
      • System template
      • Component template
      • Parameter template
      • Metric template
      • Component Types template
      • Telemetry Provider template
      • Telemetry Instance template
      • Workflows template
      • Study template
        • Goal & Constraints
        • Windowing policy
          • Trim windowing
          • Stability windowing
        • Parameter selection
        • Metric selection
        • Workload selection
        • KPIs
        • Steps
          • Baseline step
          • Bootstrap step
          • Preset step
          • Optimize step
        • Parameter rendering
        • Optimizer Options
    • Workflow Operators
      • General operator arguments
      • Executor Operator
      • FileConfigurator Operator
      • LinuxConfigurator Operator
      • WindowsExecutor Operator
      • WindowsFileConfigurator Operator
      • Sleep Operator
      • OracleExecutor Operator
      • OracleConfigurator Operator
      • SparkSSHSubmit Operator
      • SparkSubmit Operator
      • SparkLivy Operator
      • NeoLoadWeb Operator
      • LoadRunner Operator
      • LoadRunnerEnteprise Operator
    • Telemetry metric mapping
      • Dynatrace metrics mapping
      • Prometheus metrics mapping
      • NeoLoadWeb metrics mapping
      • Spark History Server metrics mapping
      • LoadRunner metrics mapping
    • Optimization Packs
      • Linux optimization pack
        • Amazon Linux
        • Amazon Linux 2
        • Amazon Linux 2022
        • CentOS 7
        • CentOS 8
        • RHEL 7
        • RHEL 8
        • Ubuntu 16.04
        • Ubuntu 18.04
        • Ubuntu 20.04
      • DotNet optimization pack
        • DotNet Core 3.1
      • Java OpenJDK optimization pack
        • Java OpenJDK 8
        • Java OpenJDK 11
        • Java OpenJDK 17
      • OpenJ9 optimization pack
        • IBM J9 VM 6
        • IBM J9 VM 8
        • Eclipse Open J9 11
      • Node JS optimization pack
        • Node JS 18
      • GO optimization pack
        • GO 1
      • Web Application optimization pack
        • Web Application
      • Docker optimization pack
        • Container
      • Kubernetes optimization pack
        • Kubernetes Pod
        • Kubernetes Container
        • Kubernetes Workload
        • Kubernetes Namespace
        • Kubernetes Cluster
      • WebSphere optimization pack
        • WebSphere 8.5
        • WebSphere Liberty ND
      • AWS optimization pack
        • EC2
        • Lambda
      • PostgreSQL optimization pack
        • PostgreSQL 11
        • PostgreSQL 12
      • Cassandra optimization pack
        • Cassandra
      • MySQL Database optimization pack
        • MySQL 8.0
      • Oracle Database optimization pack
        • Oracle Database 12c
        • Oracle Database 18c
        • Oracle Database 19c
        • RDS Oracle Database 11g
        • RDS Oracle Database 12c
      • MongoDB optimization pack
        • MongoDB 4
        • MongoDB 5
      • Elasticsearch optimization pack
        • Elasticsearch 6
      • Spark optimization pack
        • Spark Application 2.2.0
        • Spark Application 2.3.0
        • Spark Application 2.4.0
    • Command Line commands
      • Administration commands
      • User and Workspace management commands
      • Authentication commands
      • Resource management commands
      • Optimizer options commands
    • Release Notes
  • Knowledge Base
    • Creating custom optimization packs
    • Setting up a Konakart environment for testing Akamas
    • Modeling a sample Java-based e-commerce application (Konakart)
    • Optimizing a web application
    • Optimizing a sample Java OpenJ9 application
    • Optimizing a sample Linux system
    • Optimizing a MongoDB server instance
    • Optimizing a Kubernetes application
    • Leveraging Ansible to automate AWS instance management
    • Guidelines for optimizing AWS EC2 instances
    • Optimizing an Oracle Database server instance
    • Optimizing an Oracle Database for an e-commerce service
    • Guidelines for optimizing Oracle RDS
    • Optimizing a MySQL server database running Sysbench
    • Optimizing a MySQL server database running OLTPBench
    • Optimizing a live full-stack deployment (K8s + JVM)
    • Setup Instana integration
Powered by GitBook
On this page

Was this helpful?

Export as PDF
  1. Reference
  2. Construct templates

Study template

Optimization studies are defined using a YAML manifest with the following structure:

system: 1
name: Optimizing the e-shop application
goal:
  objective: maximize
  function:
    formula: payments_per_sec
    variables:
      payments_per_sec:
        metric: eshop_payments
        labels:
          componentName: eshop

workflow: eshop_jmeter_test
steps:
  - name: baseline
    type: baseline
    values:
      tomcat.maxThreads: 1024
      jvm.maxHeap: 2048
      jvm.garbageCollectorType: G1GC
      postgres.shared_buffers: 4096

with the following mandatory properties:

Field
Type
Value restrictions
Is required
Default Value
Description

system

object reference

TRUE

The system the study refers to

name

string

TRUE

The name of the study

goal

object

TRUE

kpis

list

FALSE

numberOfTrials

integer

FALSE

1

The number of trials for each experiment - see below

trialAggregation

string

MAX, MIN, AVG

FALSE

AVG

The aggregation used to calculate the score across multiple trials - see below

parametersSelection

list

FALSE

all

metricsSelection

list

FALSE

all

workloadsSelection

object array

FALSE

windowing

string

FALSE

trim

workflow

object reference

TRUE

The workflow the study refers to

steps

list

TRUE

Some of these optional properties depend on whether the study is an offline or live optimization study.

Number of trials

It is possible to perform more than one trial per experiment to validate the score of a configuration under test, e.g., to consider noisy environments.

The following fragment of the YAML definition of a study sets the number of trials to 3:

numberOfTrials: 3

Notice: This is a global property of the study which can be overwritten for each step.

Trial aggregation

The trial aggregation policy defines how trial scores are aggregated to form experiment scores.

There are three different types of strategies to aggregate trial scores:

  • AVG: the score of an experiment is the average of the scores of its trials - this is the default

  • MIN: the score of an experiment is the minimum among the scores of its trials

  • MAX: the score of an experiment is the maximum among the scores of its trial

The following fragment of the YAML definition of a study sets the trial aggregation to MAX:

trialAggregation: MAX    # Other possible values are AVG, MIN

Examples

The following system refers to an offline optimization study for a system modeling an e-commerce service, where a windowing strategy is specified:

system: "bde4f259-9a51-4c67-87aa-3c5bc599c6b9" # id of the system to optimize with the actions defined in this study
workflow: "eshop_jmeter_test" # name of the workflow to use to perform trials
name: Optimizing the e-shop application # name of the study
goal: # the performance goal to achieve
  objective: "maximize"
  function:
    formula: "eshop.payments_per_second"
windowing: # the temporal window in which to compute the score of a trial
  type: "trim"
  trim: ["10s", "0s"] # use the duration of the trial minus 0s from start and end to compute the score of the trial
parametersSelection: "all" # use all available configuration parameters
metricsSelection: "all" # gather all metrics
steps: # the steps to conduct to perform experiments and trials
  - name: "my_baseline" # do first a baseline with the provided configuration
    type: "baseline"
    values:
      jvm.maxHeap: 2048
      jvm.gcType: "-XX:+UseParallelGC"
  - name: my_optimization # then do 20 optimization experiments of 2 trials each
    type: optimize
    numberOfExperiments: 200
    numberOfTrials: 2

The following offline study refers to a tuning initiative for a Cassandra-based system (ID 2)

system: 2
name: Optimizing the cassandra - team 2
goal:
  objective: minimize
  function:
    formula: read_response_time_p90
    variables:
      read_response_time_p90:
        metric: read_response_time_p90
        labels:
          componentName: cassandra

windowing:
  type: trim
  trim: [5m, 1m]

workflow: cassandra_workflow
parametersSelection:
  - name: cassandra_jvm.jvm_maxHeapSize
  - name: cassandra.cassandra_concurrentReads
  - name: cassandra.cassandra_concurrentWrites
  - name: cassandra.cassandra_fileCacheSizeInMb
  - name: cassandra.cassandra_memtableCleanupThreshold
  - name: cassandra.cassandra_concurrentCompactors

steps:
  - name: baseline_step
    type: baseline
    values:
      cassandra_jvm.jvm_maxHeapSize: 1024
      cassandra.cassandra_concurrentReads: 32
      cassandra.cassandra_concurrentWrites: 32
      cassandra.cassandra_fileCacheSizeInMb: 512
      cassandra.cassandra_memtableCleanupThreshold: 0.11
      cassandra.cassandra_concurrentCompactors: 2

  - name: optimization_step
    type: optimize
    numberOfExperiments: 50

The following offline study is for tuning another Cassandra-based system (ID 3) by acting only on JVM and Linux parameters

system: 3
name: Optimizing a Cassandra NoSQL database version 3 (jvm + os parameters)
goal:
  objective: minimize
  function:
    formula: (x1+x2)/2
    variables:
      x1:
        metric: write_response_time_p90
        labels:
          componentName: cassandra_team1
      x2:
        metric: read_response_time_p90
        labels:
          componentName: cassandra_team1

windowing:
  type: trim
  trim: [8m,2m]

numberOfTrials: 2
workflow: cassandra_workflow_jvm_os

parametersSelection:
  - name: JVM1.jvm_maxHeapSize
  - name: JVM1.jvm_newRatio
  - name: JVM1.jvm_survivorRatio
  - name: JVM1.jvm_maxTenuringThreshold
  - name: JVM1.jvm_gcType
  - name: JVM1.jvm_concurrentGCThreads
  - name: os1.os_cpuSchedMinGranularity
  - name: os1.os_cpuSchedWakeupGranularity
  - name: os1.os_CPUSchedMigrationCost
  - name: os1.os_CPUSchedChildRunsFirst
  - name: os1.os_CPUSchedLatency

steps:
  - name: baseline_step
    type: baseline
    values:
      JVM_team1.jvm_maxHeapSize: 1024
      JVM_team1.jvm_newRatio: 2
      JVM_team1.jvm_survivorRatio: 8
      JVM_team1.jvm_maxTenuringThreshold: 15
      JVM_team1.jvm_gcType: UseConcMarkSweepGC
      JVM_team1.jvm_concurrentGCThreads: 8
      os_team1.os_cpuSchedMinGranularity: 3000000
      os_team1.os_cpuSchedWakeupGranularity: 4000000
      os_team1.os_CPUSchedMigrationCost: 500000
      os_team1.os_CPUSchedChildRunsFirst: 0
      os_team1.os_CPUSchedLatency: 24000000

  - name: optimization_sobol
    type: optimize
    numberOfExperiments: 50

Last updated 1 year ago

Was this helpful?

The goal and constraint description - see

The KPIs description - see

The list of parameters to be tuned - see

The list of metrics - see

The list of defined workloads - this only applies to live optimization studies - see

The windowing strategy - this only applies to offline optimization studies - see

The description of the steps - see

Goal & Constraints
KPI
Parameter selection
Metric selection
Workload Selection
Windowing strategy
Steps