Akamas Docs
3.6
3.6
  • Home
  • Getting started
    • Introduction
    • Insights for Kubernetes
    • Free Trial
    • Licensing
    • Deployment
      • Cloud Hosting
    • Security
    • Maintenance & Support (M&S) Services
      • Customer Support Services
      • Support levels for Customer Support Services
      • Support levels for software versions
      • Support levels with Akamas
  • Installing
    • Architecture
    • Docker compose installation
      • Prerequisites
        • Hardware Requirements
        • Software Requirements
        • Network requirements
      • Install Akamas dependencies
      • Install the Akamas Server
        • Online installation mode
          • Online installation behind a Proxy server
        • Offline installation mode
        • Changing UI Ports
        • Setup HTTPS configuration
      • Troubleshoot Docker installation issues
    • Kubernetes installation
      • Prerequisites
        • Cluster Requirements
        • Software Requirements
      • Install Akamas
        • Online Installation
        • Offline Installation - Private registry
      • Installing on OpenShift
      • Accessing Akamas
      • Useful commands
      • Selecting Cluster Nodes
    • Install the CLI
      • Setup the CLI
      • Initialize the CLI
      • Change CLI configuration
      • Use a proxy server
    • Verify the installation
    • Installing the toolbox
    • Install the license
    • Manage anonymous data collection
  • Managing Akamas
    • Akamas logs
    • Audit logs
    • Upgrade Akamas
      • Docker compose
      • Kubernetes
    • Monitor Akamas status
    • Backup & Recover of the Akamas Server
    • Users management
      • Accessing Keycloak admin console
      • Configure an external identity provider
        • Azure Active Directory
        • Google
      • Limit users sessions
        • Local users
        • Identity provider users
    • Collecting support information
  • Using
    • System
    • Telemetry
    • Workflow
    • Study
      • Offline Study
      • Live Study
        • Analyzing results of live optimization studies
      • Windowing
      • Parameters and constraints
  • Optimization Guides
    • Optimize application costs and resource efficiency
      • Kubernetes microservices
        • Optimize cost of a Kubernetes deployment subject to Horizontal Pod Autoscaler
        • Optimize cost of a Kubernetes microservice while preserving SLOs in production
        • Optimize cost of a Java microservice on Kubernetes while preserving SLOs in production
      • Application runtime
        • Optimizing a sample Java OpenJDK application
        • Optimizing cost of a Node.js application with performance tests
        • Optimizing cost of a Golang application with performance tests
        • Optimizing cost of a .NET application with performance tests
      • Applications running on cloud instances
        • Optimizing a sample application running on AWS
      • Spark applications
        • Optimizing a Spark application
    • Optimize application performance and reliability
      • Kubernetes microservices
        • Optimizing cost of a Kubernetes microservice while preserving SLOs in production
        • Optimizing cost of a Java microservice on Kubernetes while preserving SLOs in production
  • Integrating
    • Integrating Telemetry Providers
      • CSV provider
        • Install CSV provider
        • Create CSV telemetry instances
      • Dynatrace provider
        • Install Dynatrace provider
        • Create Dynatrace telemetry instances
          • Import Key Requests
      • Prometheus provider
        • Install Prometheus provider
        • Create Prometheus telemetry instances
        • CloudWatch Exporter
        • OracleDB Exporter
      • Spark History Server provider
        • Install Spark History Server provider
        • Create Spark History Server telemetry instances
      • NeoLoadWeb provider
        • Install NeoLoadWeb telemetry provider
        • Create NeoLoadWeb telemetry instances
      • LoadRunner Professional provider
        • Install LoadRunner Professional provider
        • Create LoadRunner Professional telemetry instances
      • LoadRunner Enterprise provider
        • Install LoadRunner Enterprise provider
        • Create LoadRunner Enterprise telemetry instances
      • AWS provider
        • Install AWS provider
        • Create AWS telemetry instances
    • Integrating Configuration Management
    • Integrating with pipelines
    • Integrating Load Testing
      • Integrating NeoLoad
      • Integrating LoadRunner Professional
      • Integrating LoadRunner Enterprise
  • Reference
    • Glossary
      • System
      • Component
      • Metric
      • Parameter
      • Component Type
      • Workflow
      • Telemetry Provider
      • Telemetry Instance
      • Optimization Pack
      • Goals & Constraints
      • KPI
      • Optimization Study
      • Workspace
      • Safety Policies
    • Construct templates
      • System template
      • Component template
      • Parameter template
      • Metric template
      • Component Types template
      • Telemetry Provider template
      • Telemetry Instance template
      • Workflows template
      • Study template
        • Goal & Constraints
        • Windowing policy
          • Trim windowing
          • Stability windowing
        • Parameter selection
        • Metric selection
        • Workload selection
        • KPIs
        • Steps
          • Baseline step
          • Bootstrap step
          • Preset step
          • Optimize step
        • Parameter rendering
        • Optimizer Options
    • Workflow Operators
      • General operator arguments
      • Executor Operator
      • FileConfigurator Operator
      • LinuxConfigurator Operator
      • WindowsExecutor Operator
      • WindowsFileConfigurator Operator
      • Sleep Operator
      • OracleExecutor Operator
      • OracleConfigurator Operator
      • SparkSSHSubmit Operator
      • SparkSubmit Operator
      • SparkLivy Operator
      • NeoLoadWeb Operator
      • LoadRunner Operator
      • LoadRunnerEnteprise Operator
    • Telemetry metric mapping
      • Dynatrace metrics mapping
      • Prometheus metrics mapping
      • NeoLoadWeb metrics mapping
      • Spark History Server metrics mapping
      • LoadRunner metrics mapping
    • Optimization Packs
      • Linux optimization pack
        • Amazon Linux
        • Amazon Linux 2
        • Amazon Linux 2022
        • CentOS 7
        • CentOS 8
        • RHEL 7
        • RHEL 8
        • Ubuntu 16.04
        • Ubuntu 18.04
        • Ubuntu 20.04
      • DotNet optimization pack
        • DotNet Core 3.1
      • Java OpenJDK optimization pack
        • Java OpenJDK 8
        • Java OpenJDK 11
        • Java OpenJDK 17
      • OpenJ9 optimization pack
        • IBM J9 VM 6
        • IBM J9 VM 8
        • Eclipse Open J9 11
      • Node JS optimization pack
        • Node JS 18
      • GO optimization pack
        • GO 1
      • Web Application optimization pack
        • Web Application
      • Docker optimization pack
        • Container
      • Kubernetes optimization pack
        • Horizontal Pod Autoscaler v1
        • Horizontal Pod Autoscaler v2
        • Kubernetes Pod
        • Kubernetes Container
        • Kubernetes Workload
        • Kubernetes Namespace
        • Kubernetes Cluster
      • WebSphere optimization pack
        • WebSphere 8.5
        • WebSphere Liberty ND
      • AWS optimization pack
        • EC2
        • Lambda
      • PostgreSQL optimization pack
        • PostgreSQL 11
        • PostgreSQL 12
      • Cassandra optimization pack
        • Cassandra
      • MySQL Database optimization pack
        • MySQL 8.0
      • Oracle Database optimization pack
        • Oracle Database 12c
        • Oracle Database 18c
        • Oracle Database 19c
        • RDS Oracle Database 11g
        • RDS Oracle Database 12c
      • MongoDB optimization pack
        • MongoDB 4
        • MongoDB 5
      • Elasticsearch optimization pack
        • Elasticsearch 6
      • Spark optimization pack
        • Spark Application 2.2.0
        • Spark Application 2.3.0
        • Spark Application 2.4.0
    • Command Line commands
      • Administration commands
      • User and Workspace management commands
      • Authentication commands
      • Resource management commands
      • Optimizer options commands
    • Release Notes
  • Knowledge Base
    • Performing load testing to support optimization activities
    • Creating custom optimization packs
    • Setting up a Konakart environment for testing Akamas
    • Modeling a sample Java-based e-commerce application (Konakart)
    • Optimizing a web application
    • Optimizing a sample Java OpenJ9 application
    • Optimizing a sample Linux system
    • Optimizing a MongoDB server instance
    • Optimizing a Kubernetes application
    • Leveraging Ansible to automate AWS instance management
    • Guidelines for optimizing AWS EC2 instances
    • Optimizing an Oracle Database server instance
    • Optimizing an Oracle Database for an e-commerce service
    • Guidelines for optimizing Oracle RDS
    • Optimizing a MySQL server database running Sysbench
    • Optimizing a MySQL server database running OLTPBench
    • Optimizing a live full-stack deployment (K8s + JVM)
    • Setup Instana integration
    • Setup Locust telemetry via CSV
    • Setup AppDynamics integration
Powered by GitBook
On this page
  • Prerequisites
  • Create Akamas entities
  • How to retrieve the required configurations from NeoLoad
  • Troubleshooting

Was this helpful?

Export as PDF
  1. Integrating
  2. Integrating Load Testing

Integrating NeoLoad

The focus of this guide is how to integrate Akamas with Tricentis NeoLoad in order to leverage Neoload as a performance testing tool in an Akamas optimization.

Prerequisites

To be able to execute a test from Neoload and to collect the Neoload metrics you will need:

  • Neoload 7.0+

  • a valid Neoload license;

  • a working Neoload test script;

  • a fully working Neoload farm composed by:

    • NeoLoadWeb (saas or on-prem);

    • a Neoload "zone" composed of 1 controller and (at least) 1 loadgenerator;

  • URL (and port if it is not the default one) of the NeoLoadWeb server;

  • to whitelist the connections between:

    • Akamas server and NeoLoadWeb server over port 8080 and 8081 (if NeoLoadWeb is deployed on-premises);

    • Akamas server and internet if NeoLoadWeb is managed as a SaaS platform

  • A NeoLoadWeb user with a "tester" role ("guest" role cannot be used due to limitations in triggering test execution). For compatibility reasons, the user related to the generated token must belong to the default workspace.

  • A NeoLoadWeb API token created with the above user to inherit the same rights

Create Akamas entities

Component

At the component level, the NeoLoad integration is trivial and only requires specifying a single NeoLoad property at the Web Application component. These properties will be used during the telemetry phase to map the NeoLoad metrics (e.g. transactions response time, error rate, etc..) to the right Akamas component.

The example below provides an example of a component definition with the appropriate NeoLoadWeb property:

name: konakart
description: konakart service layer component
componentType: Web Application
properties:
  neoloadweb: "true"

Telemetry instance

At the telemetry level, the NeoLoad integration relies on the NeoLoadWeb telemetry provider.

The following is an example of a NeoLoad telemetry instance:

# NeoLoad Web Telemetry Provider Instance
provider: Neoload
config:
  neoloadApi: http://NeoLoadWeb-api.mydomain.com
  accountToken: XXXX

Workflow

The workflow configuration changes depending on your NeoLoadWeb deployment, since it could be Saas or on-premises.

For compatibility reasons, the user related to the generated token must belong to the default workspace.

How to retrieve the required configurations from NeoLoad

Some properties can be retrieved from the NeoLoad application or NeoLoadWeb.

Property
Steps

scenarioName

  • open project on NeoLoad

  • go to the runtime tab

  • pick a scenario from the "scenarios" multi-select

accountToken

  • access your NeoLoad Web platform

  • go to profile

  • hit "generate access token" or retrieve an existing one

Notice: for compatibility reasons, the user related to the generated token must belong to the default workspace.

You need to have a controller and at least one load generator in place in the zone you have configured in the workflow step

Property
Steps

lgZones controllerZoneId

  • access your NeoLoad Web platform

  • go to the Resources tab

  • pick the Zone id of an existing zone or create a new one

  • only for lgZones: append ":" as a suffix plus the number of load generators you are going to use during the test

Troubleshooting

Assuming that the NeoLoad scripts are hosted on your instance (thus you didn’t upload them on NeoLoad Web) the following command will run the load test scripts deployed in folder neoload-project on your NeoLoad farm:

docker run --rm \
-v'/home/ubuntu/studyTroubleshooting/updatedArtifacts/neoload/altStudy:/neoload-project' \
-e NEOLOADWEB_TOKEN=xxxxxxxx \
-e CONTROLLER_ZONE_ID=iM7QB \
-e LG_ZONE_IDS=iM7QB:1 \
-e TEST_RESULT_NAME=myTestResult \
-e SCENARIO_NAME=10VU_5min \
neotys/neoload-web-test-launcher

where neoload-project is the name of the mount point that the container is expecting. Please do not change it. Docker will mount your project folder in an internal folder named neoload-project

The project folder can contain:

  • A NeoLoad project folder including .nlp, config.zip ...

  • A single zip file containing the NeoLoad project

  • A single YAML file containing the NeoLoad project as code

Problem Test file upload on NeoloadWeb fails with the following error:

Uploading project
Error code: 400
{"error": "UNAUTHORIZED_OPERATION"}
io.swagger.client.ApiException: Bad Request
        at io.swagger.client.ApiClient.handleResponse(ApiClient.java:924)
        at io.swagger.client.ApiClient.execute(ApiClient.java:840)
        at io.swagger.client.api.RuntimeApi.postUploadProjectWithHttpInfo(RuntimeApi.java:342)
        at io.swagger.client.api.RuntimeApi.postUploadProject(RuntimeApi.java:328)
        at com.neotys.nlweb.runtime.Launch.launchTest(Launch.java:241)
        at com.neotys.nlweb.runtime.Launch.main(Launch.java:59)

Solution The user related to the token you are using must belong to the default workspace.

Last updated 1 year ago

Was this helpful?

The overall configuration is described by the page.

In case the NeoLoadWeb telemetry provider is not already installed on the Akamas server, please follow the instructions on the page. After installing the telemetry provider, a NeoLoadWeb telemetry instance can be implemented following the instructions on page.

At the workflow level, the NeoLoad integration requires implementing a dedicated task based on the .

The operator configurations required by NeoLoad are described on the .

You might want to use docker container which can be useful for quickly troubleshooting your NeoLoad integration instead of building and running a full study on Akamas.

Integrating Neoload provider
Setup NeoLoad telemetry provider
Create NeoLoadWeb telemetry instance
NeoLoadWeb operator
NeoLoad operator page
this