Akamas Docs
3.6
3.6
  • Home
  • Getting started
    • Introduction
    • Insights for Kubernetes
    • Free Trial
    • Licensing
    • Deployment
      • Cloud Hosting
    • Security
    • Maintenance & Support (M&S) Services
      • Customer Support Services
      • Support levels for Customer Support Services
      • Support levels for software versions
      • Support levels with Akamas
  • Installing
    • Architecture
    • Docker compose installation
      • Prerequisites
        • Hardware Requirements
        • Software Requirements
        • Network requirements
      • Install Akamas dependencies
      • Install the Akamas Server
        • Online installation mode
          • Online installation behind a Proxy server
        • Offline installation mode
        • Changing UI Ports
        • Setup HTTPS configuration
      • Troubleshoot Docker installation issues
    • Kubernetes installation
      • Prerequisites
        • Cluster Requirements
        • Software Requirements
      • Install Akamas
        • Online Installation
        • Offline Installation - Private registry
      • Installing on OpenShift
      • Accessing Akamas
      • Useful commands
      • Selecting Cluster Nodes
    • Install the CLI
      • Setup the CLI
      • Initialize the CLI
      • Change CLI configuration
      • Use a proxy server
    • Verify the installation
    • Installing the toolbox
    • Install the license
    • Manage anonymous data collection
  • Managing Akamas
    • Akamas logs
    • Audit logs
    • Upgrade Akamas
      • Docker compose
      • Kubernetes
    • Monitor Akamas status
    • Backup & Recover of the Akamas Server
    • Users management
      • Accessing Keycloak admin console
      • Configure an external identity provider
        • Azure Active Directory
        • Google
      • Limit users sessions
        • Local users
        • Identity provider users
    • Collecting support information
  • Using
    • System
    • Telemetry
    • Workflow
    • Study
      • Offline Study
      • Live Study
        • Analyzing results of live optimization studies
      • Windowing
      • Parameters and constraints
  • Optimization Guides
    • Optimize application costs and resource efficiency
      • Kubernetes microservices
        • Optimize cost of a Kubernetes deployment subject to Horizontal Pod Autoscaler
        • Optimize cost of a Kubernetes microservice while preserving SLOs in production
        • Optimize cost of a Java microservice on Kubernetes while preserving SLOs in production
      • Application runtime
        • Optimizing a sample Java OpenJDK application
        • Optimizing cost of a Node.js application with performance tests
        • Optimizing cost of a Golang application with performance tests
        • Optimizing cost of a .NET application with performance tests
      • Applications running on cloud instances
        • Optimizing a sample application running on AWS
      • Spark applications
        • Optimizing a Spark application
    • Optimize application performance and reliability
      • Kubernetes microservices
        • Optimizing cost of a Kubernetes microservice while preserving SLOs in production
        • Optimizing cost of a Java microservice on Kubernetes while preserving SLOs in production
  • Integrating
    • Integrating Telemetry Providers
      • CSV provider
        • Install CSV provider
        • Create CSV telemetry instances
      • Dynatrace provider
        • Install Dynatrace provider
        • Create Dynatrace telemetry instances
          • Import Key Requests
      • Prometheus provider
        • Install Prometheus provider
        • Create Prometheus telemetry instances
        • CloudWatch Exporter
        • OracleDB Exporter
      • Spark History Server provider
        • Install Spark History Server provider
        • Create Spark History Server telemetry instances
      • NeoLoadWeb provider
        • Install NeoLoadWeb telemetry provider
        • Create NeoLoadWeb telemetry instances
      • LoadRunner Professional provider
        • Install LoadRunner Professional provider
        • Create LoadRunner Professional telemetry instances
      • LoadRunner Enterprise provider
        • Install LoadRunner Enterprise provider
        • Create LoadRunner Enterprise telemetry instances
      • AWS provider
        • Install AWS provider
        • Create AWS telemetry instances
    • Integrating Configuration Management
    • Integrating with pipelines
    • Integrating Load Testing
      • Integrating NeoLoad
      • Integrating LoadRunner Professional
      • Integrating LoadRunner Enterprise
  • Reference
    • Glossary
      • System
      • Component
      • Metric
      • Parameter
      • Component Type
      • Workflow
      • Telemetry Provider
      • Telemetry Instance
      • Optimization Pack
      • Goals & Constraints
      • KPI
      • Optimization Study
      • Workspace
      • Safety Policies
    • Construct templates
      • System template
      • Component template
      • Parameter template
      • Metric template
      • Component Types template
      • Telemetry Provider template
      • Telemetry Instance template
      • Workflows template
      • Study template
        • Goal & Constraints
        • Windowing policy
          • Trim windowing
          • Stability windowing
        • Parameter selection
        • Metric selection
        • Workload selection
        • KPIs
        • Steps
          • Baseline step
          • Bootstrap step
          • Preset step
          • Optimize step
        • Parameter rendering
        • Optimizer Options
    • Workflow Operators
      • General operator arguments
      • Executor Operator
      • FileConfigurator Operator
      • LinuxConfigurator Operator
      • WindowsExecutor Operator
      • WindowsFileConfigurator Operator
      • Sleep Operator
      • OracleExecutor Operator
      • OracleConfigurator Operator
      • SparkSSHSubmit Operator
      • SparkSubmit Operator
      • SparkLivy Operator
      • NeoLoadWeb Operator
      • LoadRunner Operator
      • LoadRunnerEnteprise Operator
    • Telemetry metric mapping
      • Dynatrace metrics mapping
      • Prometheus metrics mapping
      • NeoLoadWeb metrics mapping
      • Spark History Server metrics mapping
      • LoadRunner metrics mapping
    • Optimization Packs
      • Linux optimization pack
        • Amazon Linux
        • Amazon Linux 2
        • Amazon Linux 2022
        • CentOS 7
        • CentOS 8
        • RHEL 7
        • RHEL 8
        • Ubuntu 16.04
        • Ubuntu 18.04
        • Ubuntu 20.04
      • DotNet optimization pack
        • DotNet Core 3.1
      • Java OpenJDK optimization pack
        • Java OpenJDK 8
        • Java OpenJDK 11
        • Java OpenJDK 17
      • OpenJ9 optimization pack
        • IBM J9 VM 6
        • IBM J9 VM 8
        • Eclipse Open J9 11
      • Node JS optimization pack
        • Node JS 18
      • GO optimization pack
        • GO 1
      • Web Application optimization pack
        • Web Application
      • Docker optimization pack
        • Container
      • Kubernetes optimization pack
        • Horizontal Pod Autoscaler v1
        • Horizontal Pod Autoscaler v2
        • Kubernetes Pod
        • Kubernetes Container
        • Kubernetes Workload
        • Kubernetes Namespace
        • Kubernetes Cluster
      • WebSphere optimization pack
        • WebSphere 8.5
        • WebSphere Liberty ND
      • AWS optimization pack
        • EC2
        • Lambda
      • PostgreSQL optimization pack
        • PostgreSQL 11
        • PostgreSQL 12
      • Cassandra optimization pack
        • Cassandra
      • MySQL Database optimization pack
        • MySQL 8.0
      • Oracle Database optimization pack
        • Oracle Database 12c
        • Oracle Database 18c
        • Oracle Database 19c
        • RDS Oracle Database 11g
        • RDS Oracle Database 12c
      • MongoDB optimization pack
        • MongoDB 4
        • MongoDB 5
      • Elasticsearch optimization pack
        • Elasticsearch 6
      • Spark optimization pack
        • Spark Application 2.2.0
        • Spark Application 2.3.0
        • Spark Application 2.4.0
    • Command Line commands
      • Administration commands
      • User and Workspace management commands
      • Authentication commands
      • Resource management commands
      • Optimizer options commands
    • Release Notes
  • Knowledge Base
    • Performing load testing to support optimization activities
    • Creating custom optimization packs
    • Setting up a Konakart environment for testing Akamas
    • Modeling a sample Java-based e-commerce application (Konakart)
    • Optimizing a web application
    • Optimizing a sample Java OpenJ9 application
    • Optimizing a sample Linux system
    • Optimizing a MongoDB server instance
    • Optimizing a Kubernetes application
    • Leveraging Ansible to automate AWS instance management
    • Guidelines for optimizing AWS EC2 instances
    • Optimizing an Oracle Database server instance
    • Optimizing an Oracle Database for an e-commerce service
    • Guidelines for optimizing Oracle RDS
    • Optimizing a MySQL server database running Sysbench
    • Optimizing a MySQL server database running OLTPBench
    • Optimizing a live full-stack deployment (K8s + JVM)
    • Setup Instana integration
    • Setup Locust telemetry via CSV
    • Setup AppDynamics integration
Powered by GitBook
On this page
  • System
  • Component
  • Component Type
  • Parameters
  • Metrics

Was this helpful?

Export as PDF
  1. Knowledge Base

Modeling a sample Java-based e-commerce application (Konakart)

Last updated 1 year ago

Was this helpful?

This page provides code snippets for each Akamas construct by considering the Konakart, a Java-based e-commerce application (), as a reference and modeling it as a 2-tier application, with an application server and a database (MySQL) layers.

For simplicity's sake, the optimization use case is defined as follows:

  • Optimization scope: JVM parameters

  • Optimization goal: reduce the application memory footprint (i.e. heap max that can be allocated by the JVM)

  • Optimization constraints: no impact on service level (i.e. response times, throughput, and error rate have to be the same before/after the optimization)

System

This is the YAML file providing the system definition for the reference use case:

name: Konakart
description: Konakart e-commerce application

Component

Since the optimization scope only considers JVM parameters, only a Java component needs to be modeled.

The following snippet defines a Konakart Java component based on a java-openjdk-11 component type.

name: Konakart jvm
description: jvm layer of Konakart e-commerce
componentType: java-openjdk-11

A different optimization scope would have required a different modeling approach. For instance, a broader optimization scope including the Linux layers of both application and database and the database layer would have required 3 additional components: 2 distinct components (of the same component type) for the 2 Linux layers and 1 component for the database layer.

From a monitoring perspective, there are only 2 mandatory data sources: the JVM layer, which will provide the goal metric needed to evaluate the score (heap size), and the web application layer, which will provide the metrics needed to evaluate optimization constraints (response time, throughput and error rate). The web application component is based on a particular component type that aims to ease the collection of end-user metrics and has no parameters attached. Generally speaking the definition of a component based on the web application component type can be handy every time an optimization foresees the execution of a performance test and it is required to evaluate the end-to-end metrics.

The following snippet defines a Konakart component based on a web application component type.

name: Konakart
description: Web Application layer of Konakart e-commerce
componentType: Web Application

A more comprehensive approach to telemetries could include additional metrics and data sources to provide a better understanding of the system behavior. The example provided only focuses on the mandatory metrics and the components needed to model them.

Component Type

Here is a (simplified) component types definition for the reference use case.

name: java-openjdk-11
description: The component type of Java OpenJDK and Oracle HotSpot version 11

parameters:
  - name: jvm_maxHeapSize
    domain:
      type: integer
      domain: [16, 102400]
    defaultValue: 1024
    operators:
      FileConfigurator:
        confTemplate: -Xmx${value}M

  - name: jvm_gcType
    domain:
      type: categorical
      categories: [Serial, Parallel, ConcMarkSweep, G1]
    defaultValue: G1
    operators:
      FileConfigurator:
        confTemplate: -XX:+Use${value}GC

metrics:
  - name: jvm_heap_size
  - name: jvm_gc_time
name: Web Application
description: Component-type containing the metrics representing a web application.

parameters: []

metrics:
  - name: transactions_response_time
  - name: transactions_throughput
  - name: transactions_error_rate

These component types are included in the "Java" and "Web Application" Optimization Packs and are available in any Akamas installation.

Parameters

Here is a (simplified) definition of the Java parameters related to the Java component type used for the reference use case.

parameters:
  - name: jvm_maxHeapSize
    description: Maximum heap size
    unit: megabytes

  - name: jvm_gcType
    description: Type of the garbage collection algorithm
    unit: ""

These parameters are included in the "Java" and "Web Application" Optimization Packs and are available in any Akamas installation.

Metrics

Here is a (simplified) definition of the web application metrics related to the web application component type used for the reference use case.

metrics:
  - name: transactions_response_time
    description: The average transaction response time
    unit: milliseconds

  - name: transactions_throughput
    description: The number of transactions executed per second
    unit: transactions/s

 - name: transactions_error_rate
    description: The percentage of transactions flagged as error
    unit: percent

These parameters are included in the "Web Application" Optimization Pack and are available in any Akamas installation.

https://www.konakart.com/