Akamas Docs
3.4.0
Ask or search…
K

Optimizing a web application

In this study, Akamas will optimize a web application by tuning the JVM parameters. The workflow leverages NeoLoad’s load generator to gather metrics through the dedicated NeoLoad Web operator and the NeoLoad Web provider.

Optimization setup

System

The following snippets contain the system definition composed by a JVM running the petstore web application.
System: webapplication
name: webapplication
description: Petstore server
Component: jvm
name: jvm
description: JVM underlying the petstore application
componentType: openjdk-11
properties:
instance: "petstore"
Component: webapp
name: webapp
description: Petstore web-application
componentType: Web Application
Telemetry instance: NeoLoadWeb
provider: NeoLoadWeb
config:
accountToken: NLW_TOKEN

Workflow

Here’s a workflow that creates a new configuration file by interpolating the tuned parameters in a template file, restarts the application to apply the parameters, and triggers the execution of a load test:
name: neoloadweb_wf
tasks:
- name: Set Java parameters
operator: FileConfigurator
arguments:
source:
hostname: app.petstore.com
username: ubuntu
key: # ...
path: /home/ubuntu/akamas/conf_template
target:
hostname: app.petstore.com
username: ubuntu
key: # ...
path: /home/ubuntu/akams/jvm.conf
- name: Restart JVM
operator: Executor
arguments:
command: bash /home/ubuntu/akamas/configure_and_restart.sh
host:
# script location ...
- name: run NeoLoadWeb load test
operator: NeoLoadWeb
arguments:
accountToken: NLW_TOKEN
projectFile:
# projectfile location ...

Study

Here’s a study in which Akamas tries to minimize the Java memory consumption by acting only on the heap size and on the type of garbage collector.
The web application metrics are used in the constraints to ensure the configuration does not degrade the service performances (throughput, response time, and error rate) below the acceptance level.
name: optimize_webapp_memory
system: webapplication
workflow: neoloadweb_wf
goal:
objective: minimize
function:
formula: heap
variables:
heap:
metric: jvm.jvm_maxHeapSize
constraints:
- metric: webapp.transactions_throughput
greaterThan: 300
- metric: webapp.transactions_response_time_max
lowerThan: 6500
- metric: webapp.transactions_response_time
lowerThan: 600
- metric: webapp.transactions_error_rate
lowerThan: 0.1
parametersSelection:
- name: jvm.jvm_maxHeapSize
domain: [16, 2000]
- name: jvm.jvm_gcType
categories: [-XX:+UseG1GC, -XX:+UseParallelGC, -XX:+UseConcMarkSweepGC, -XX:+UseSerialGC]
numberOfTrials: 3
steps:
- name: baseline
type: baseline
values:
jvm.jvm_maxHeapSize: 2000
jvm.jvm_gcType: -XX:+UseG1GC
- name: optimization
type: optimize
numberOfExperiments: 99
maxFailedExperiments: 25
Last modified 1mo ago